Literature relative to phage sequence analysis.

This page is a gathering point for links from our phage sequence database system into the literature. We accumulate various notes here about the contents of papers that we have had reason to refer to from inside the database system. This page is not intended to be a comprehensive review of phage literature, although if it is helpful to anyone, they are welcome to use it. -- Stephen C. Hardies

Abbasifar R, Griffiths MW, Sabour PM, Ackermann HW, Vandersteegen K, Lavigne R, Noben JP, Alanis Villa A, Abbasifar A, Nash JH, Kropinksi AM.  2014.  Supersize me: Cronobacter sakazakii phage GAP32.  Vir. 460-461: 138-146.  PMID 25010279.

Abrescla NGA Cockburn JJB Grimes JM Sutton GC Dipros JM Butcher SJ Fuller SD San Martin C Burnett RM Stuart DI Bamford DH Bamford JKH. Insights into assembly from structural analysis of bacteriophage PRD1.  Nature 432:68-74.
Abrescia NG, Bamford DH, Grimes JM, and Stuart DI. 2012. Structure unifies the viral universe Annu. Rev. Biochem 81: 796-822. PMID 22482909.

Abuladze NK, Gingery M, Tsai J, Eiserling FA. 1994. Tail Length Determination in Bacteriophage T4.  Vir. 199:301-310.

Adriaenssens EM Ackermann H-W Anany H Blasdel B Connerton IF Goulding D Griffiths MW Hooton SP Kutter EM Kropinski AM Lee J-H Maes M Pickard D Ryu S Sepehrizadeh Z Shahrbabak SS Toribio AL Lavigne R.  (2012) A suggested new bacteriophage genus: "Viunalikevirus".  Arch Virol 157:2035-2046. PMID 22707403.


Agirrezabala X, Martin-Benito J, Caston JR, Miranda R, Valpuesta M, and Carrascosa JL. 2005. Maturation of phage T7 involves structural modification of both shell and inner core components.  EMBO J. Agirrezabala, X., Martin-Benito, J., Valle, M., Gonzalez, J.M., Valencia, A., Valpuesta, J.M., and Carrascosa, J.L. (2005) Structure of the connector of bacteriophage T7 at 8A resolution: structural  homologies of a basic component of a DNA translocating machinery. J Mol Biol 347: 895–902.

Aksyuk AA, Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG.  2009.  The structure of gene product 6 of bacteriphage T4, the hinge-pin of the baseplate. Structure 17: 800-808

Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuld M, Namba K, Ono Y, Tsukihara T, and Nakagawa A. 2007.  the crstal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosius provides insight into the evolution of viruses.  J. Mol. Biol. 268: 1469-1483. PMID 17397865.

Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossman MG. 2009. The tail sheath structure of bacteriphage T4: a molecular machine for infecting bacteria. EMBO J. 28:821-9.

Aksyuk AA, Bowman VD, Kaufmann , Fields C, Klose T, Holdawayt HA,.Fischetti VA, Rossmann MG. 2012.  Structural investigation sof a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry.  PNAS 109:14001-14006. PMID 22891295.

Albert A, Munoz-Espin D, Jimenez M, Asensio JL, Hermoso JA, Salas M, and Meljer WJJ. 2005. Structural basis for membrane anchorage of viral phi29 DNA during replication.  J. Biol. Chem. 280: 42486-42488.

Allison GE. Angeles D. Tran-Dinh N. Verma NK. 2002.  Complete Genomic Sequence of SfV, a Serotype-Converting Temperate Bacteriophage of Shigella flexneri. J.Bact.184:1974-87. Altermann, E., Klein, J. R. & Henrich, B. (1999). Primary structure and features of the genome of the Lactobacillus
gasseri temperate bacteriophage phi adh. Gene 236; 333-346. Andrews D, Butler JS, Al-Bassam J, Joss L, Winn-Stapley DA, Casjens S, and Cin golani G. 2004. Bacteriophage P22 tail accessory factor GP26 is a long triple-stranded coiled-coil.  J. Biol. Chem. Dec. 27 in press. Aravind, L., Makarova, K. S. & Koonin, E. V. (2000). Survey and summary. Holliday junction
resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary
trajectories. Nucleic Acids Res 28, 3417-3432.

Arisaka F, Takeda S, Funane K, Nishijima N, and Ishii S. 1990. Structural studies of the contractile tail sheath protein of bacteriophage T4. 2. Structural analyses of the tail sheath protein, gp18, by limited proteolysis, immunoblotting and immunoelectron microscopy. Biochemistry 29: 5057-5062. UTHSCSA Link.

Atanasova NS, Sencilo A, Peitila MK, Roine E, Oksanen HM, Bamford DH.  2015.  Comparison of lipid-containing bacterial and archael viruses.  Adv Virus Res.  92:1-61.

Autret S, Nair R, Errington J. 2001. Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol. Micro. 41 (3): 743-755.

Bailey S, Wichitwechkarn J, Johnson D, Reilly BE, Anderson DL, Bodley JW. 1990.  Phylogenetic analysis and secondary structure of the Bacillus subtilis bacteriophage RNA required for DNA packaging.  J Biol Chem. 265:22365-70.  PMID: 2125049

Bailly-Bechet M, Vergassola M, and Rocha E. 2007. Causes for the intriguing presence of tRNAs in phages. Genome Res. 17:1486-1495. UTHSCSA Link.

Baker ML, Jiang W, Rixon FJ, and Chiu W. 2005. Common Ancestry of Herpesviruses and Tailed DNA Bacteriophages. J. Vir. 79: 14967-14970. UTHSCSA Link. Baker ML, Hryc CF, Zhang Q, Wu W, Jakana J, Haase-Pettingell C, Afonine PV, Adams PD, King JA, Jiang W, Chiu W.  2013.  Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling.  Proc. Natl. Acad. Sci. USA 110: 12301-12306.

Bamford JK, Hanninen AL, Pakula TM, Ojala PM, Kalkkinen N, Frilander M, Bamford DH. Genome organization of membrane-containing bacteriophage PRD1. Virology. 1991 Aug;183(2):658-76. Baudoux AC Hendrix RW Lander GC Baily X Podell S Paillard C Johnson JE Potter CS Carrager B Azam F. 2012. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses.  Environ. Microbiol. 14:2071-2086.  PMID 22225728

Battistuzzi FU, Feijao A, Hedges SB. 2004. A genomic timescale of prokaryote evolution: insights into the orgin of methaongenesis, phototrophy, and the colonization of land. BMC Evol. Biol 4:44.


Bartel PL, Roecklein JA, SenGupta D, Fields S. 1996. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genetics 12 (1): 72-77.

Bartlett DH. Azam F. 2005. Chitin, Cholera, and competence (Science Perspective). Sci. 310: 1775-1777. Baumann RG, Black LW.  2003.  Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity.
J Biol Chem. 278(7):4618-27.

Baumann RG, Mullaney J, Black LW. 2006. Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol. Micro. 61: 16-32. UTHSCSA Link.

Becker SC, Foster-Frey, J, Stodola AJ, Anacker D, Donovan DM. (2009) Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain.  Gene 443: 32-41.

Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. 2009. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.  FEMS Microbiol Lett 294:52-60.

Beilstein F, Dreiseikelmann B. 2005. Bacteriophages of freshwater Brevundimonas vesicularis isolates. Res. Micro. xxx:xxxx

Benevides JM, Bondre P, Duda RL, Hendrix RW, Thomas GJ. 2004. Domain structures and roles in bacteriophage HK97 capsid assembly and maturation. Biochem. 43: 5428-5436.


Benkovic SJ, Valentine AM, Salinas F.  2001. Replisome-mediated DNA replication. Ann. Rev. Biochem.

Benson SD, Bamford JKH, Bamford DH, Burnett RM. 1999. Viral evolution revealed by Bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825-833.

Berger B. Shor PW. 1998.  On the Structure of the Scaffolding Core of Bacteriophage T4 and Its Role in Head Length Determination. J. Struct. Biol. 121(3):285-294.

Beumer A, and Robinson JB. 2005. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl. Env.Micro. 71:8301-8304.


Bignell C, Thomas CM. 2001. The bacterial ParA-ParB partitioning proteins. J. Biotechnology 91 (1): 1-34.

Billington,S.J., Huggins,A.S., Johanesen,P.A., Crellin,P.K., Cheung,J.K., Katz,M.E., Wright,C.L., Haring,V. and Rood,J.I. 1999. Complete nucleotide sequence of the 27-kilobase virulence related  locus (vrl) of Dichelobacter nodosus: evidence for extrachromosomal  origin.  Infect. Immun. 67 (3), 1277-1286. Binettti AG, Del Rio B, Martin MC, Alvarez MA. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence.  Appl. Env. Micro. 71: 6096-6103.


Bjornsti MA, Reilly BE, Anderson DL.1983. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA protein gp3. J Virol. 45:383-96. PMID: 6185695

Bjornsti MA, Reilly BE, Anderson DL. 1984. Bacteriophage phi 29 proteins required for in vitro DNA-gp3 packaging. J Virol. 1984 50:766-72.  PMID: 6427474

Bjornsti MA, Reilly BE, Anderson DL. 1985, Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: prohead restoration for DNA-gp3 packaging and assembly.  J Virol. 53:858-61.  PMID: 3919187

Black LW, Peng G. 2006. Mechanistic coupling of bacteriophage T4 DNA packaging to components of the replication-dependent late transcription machinery. J. Biol. Chem. 281: 25635-25643.

Black LW, Thomas JA. 2012. Condensed Genome Structure. Adv Exp Med Biol. 2012;726:469-87. doi: 10.1007/978-1-4614-0980-9_21. Review. PMID: 22297527

Blackburn, N. T. & Clarke, A. J. (2001). Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol
52, 78-84.


Blatny JM, Godager L, Lunde M, and Ness IF. 2004. Compelte genome sequence of the Lactococcus lactis termperatue phage phiLC3: coparative analysis of phiLC3 and its relatives in lactococci and streptococci.  Vir. 318:231-244.


Blum H, Zillig W, Mallok S, et al. The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses.  VIROLOGY 281 (1): 6-9 MAR 1 2001.

Borriss M, Lombardot T, Glockner FO, Becher D, Albrecht D, Schweder T. 2007. Genome and proteome characterization of the psychrophilic Flavobacterium bacteriophage 11b. Extremophiles 11: 95-104.

Botstein D. 1980. A theory of modular evolution for bacteriophages. Ann. N.Y. Acad. Sci. 354: 484-490.


Bouchard, J. D. & Moineau, S. (2000). Homologous recombination between a lactococcal
bacteriophage and the chromosome of its host strain. Virology 270, 65-75.

Brietbart M, Rohwer F. 2006.  Here a virus, there a virus, everywhere the same virus? Trends in Microbiology 13:xxxx


Brondsted L, Ostergaard S, Pedersen M, et al. 2001.  Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: Evolution, structure, and genome organization of lactococcal bacteriophages. Virol. 283 (1): 93-109.


Bouet JY, Funnell BE. P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J. 18 (5): 1415-1424.

Brenner S. Bacteriophage tales. Current Biology. 7(11):R736, 1997

Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, and
Rohwer F. (2002) Genomic analysis of uncultured marine viral communities. PNAS 2002 99: 14250-14255.

Brentlinger KL. Hafenstein S. Novak CR. Fane BA. Borgon R. McKenna R. Agbandje-McKenna M. 2002.
Microviridae, a family divided: isolation, characterization, and genome sequence of phiMH2K, a bacteriophage of the
obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus. J. Bact. 184(4):1089-1094.

Briers, Y., Miroshnikov, K., Chertkov, O., Nekrasov, A., Mesyanzhinov, V., Volckaert, G., and Lavigne, R., 2008. The structural peptidoglycan hydrolase gp181 of bacteriophage phiKZ. Biochem Biophys Res Commun. 374, 747-751.

Brussow, H. & Desiere, F. (2001). Comparative phage genomics and the evolution of
Siphoviridae: insights from dairy phages. Mol. Microbiol. 39, 213-223.

Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T.  2016.  Two asian jumbo phages, phiRSL2 and phiRSF1, infect RAlstonia solanacearum and show common features of phiKZ-related phages.  Virology 494:56-66;  PMID 27081857

Burkal'tseva MV, Krylov VN, Pleteneve EA, Shaburova OV, Krylov SV, Volkart G, Sykilinda NN, Kurochkina LP, and Mesyanzhinov VV. 2002. Phenogenetic characterization of a group of giant phiKZ-like bacteriophages of Pseudomonas aeruginosa. Russian J. Genet. 38: 1242-1250. UTHSCSA Link. Butcher SJ, Manole V, Karhu NJ.  2012 Lipid-containing viruses: bacteriphage PRD1 assembly.  Adv Exp Med Biol 726:365-377.

Campbell A. 1994. Comparative molecular biology of lambdoid phages. Annu Rev. Microbiol. 48:193-222UTHSCSA Link.


Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ. 2005. Bacteriophage P100 for control of Listeria monocytogenes in foods": Genome sequence, bioinformatic analyses, oral toxicity, study, and application.  Reg. Toxicol. Pharm. 43: 201-312.

Caruthers JM and McKay DB. 2002.Helicase structure and mechanism. Curr. Opinion in Str. Biol. 12: 123-133.

Casjens, S., Wyckoff, E., Hayden, M., Sampson, L., Eppler, K., Randall, S., et al. (1992) Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol 224: 1055–1074.

Sherwood R. Casjens, Eddie B. Gilcrease, Wai Mun Huang, Kim L. Bunny, Marisa L. Pedulla, Michael E. Ford, Jennifer M. Houtz, Graham F. Hatfull, and Roger W. Hendrix. 2004. The pKO2 Linear Plasmid Prophage of Klebsiella oxytoca. J. Bacteriol. 186: 1818-1832.


Casjens AR, Gilcrease, EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, and Hendrix RW. 2005. The generalized transducing Salmonella Bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bact. 187: 1091-1104.

Chang J, Weigele P, King J. Chiu W, Jiang W. 2006.  Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery.  Structure 14:1073-1082.  PMID 16730179.

Casjens S. 2003. Prophages and bacterioal genomics: what have we learned so far? Mol. Microbiol. 49: 277-300.


Casjens SR. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Micro. 8: 451-458.


Catalano CE. The terminase enzyme from bacteriophage lambda: a DNA-packaging machine.  Cellular & Molecular Life Sciences. 57(1):128-48, 2000 Jan 20. UI: 20406133

Cermakian N, Ikeda TM, Miramontes P, Lang BF, Gray MW, and Cedergren R. 1997. On the evolution of the single-subunit RNA polymerases.J. Mol. Evol. 45:671-681.

Cerritelli, M.E., Trus, B.L., Smith, C.S., Cheng, N., Conway, J.F., and Steven, A.C.  2003. A second symmetry mismatch at the portal vertix of bacteriophage T7: 8-fold symmetry in the procapsid core.  J. Mol. biol. 3327: 1-6.  PMID 12614603

Cerritelli ME, Wall JS, Simon MN, Conway JF, Steven AC.  1996. Stoichiometry and domainal organization of the long tail-fiber of bacteriphage T4: a hinged viral adhesin.  J. Mol. biol. 260:767-780.  PMID: 8709154.

Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, and Volckaert G. 2006. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup with the T7 supergroup. J. Bact. 188: 6924-6931.

Ceyssens PJ, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D, Dougan G, Noben JP, Kropinski A, Kutter E, Lavigne R.  2010.  Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the "N4-like viruses".  Virology 405:26-30.  PMID 20619867.

Ceyssens PJ, Minakhin L, Van den Bossche A, Yakunina M, Klimuk E, Blasdel B, De Smet J, Noben JP, Blaisi U, Severiov K, Lavigne R.  2014.  Development of gaint bacteriophage phiKZ is independent of the host transcription apparatus.  J. Virol 88:10501-1-510.  PMID 24965474.

Chan JZ-M, Millard AD, Mann NH, and Schafer H. 2014 Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes.  Front. Microbiol 10:

Chan YW Mohr R Millard AD Holmes AB Larkum AW Whitworth AL Mann NH Scanlan DJ Hess WR Clokie MR (2011) Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.  Mol. Biol. Evol. 28:2269-2274.  PMID 21335340

Chandry, P. S., Moore, S. C., Boyce, J. D., Davidson, B. E. & Hillier, A. J. (1997). Analysis
of the DNA sequence, gene expression, origin of replication and modular structure of the
Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol 26, 49-64.

Chang B, Miyamoto H, Taniguchi H, and Yoshida S. 2002. Isolation and Genetic Characterization of a Novel Filamentous Bacteriophage, a Deleted Form of Phage f237, from a Pandemic Vibrio parahaemolyticus O4:K68 Strain.  MICROBIOLOGY AND IMMUNOLOGY 46 (8): 565-569.

Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ, Anderson DL, and Bustamante C. 2005. Mechanism of force generation of a viral DNA packaging motor. Cell 122: 683-692.


Chen, C., Sheng, S., Shao, Z. & Guo, P. (2000). A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA translocating
machinery. J. Biol. Chem. 275, 17510–17516. UTHSCSA Link.

Chen F., and Lu, J. 2002. Genomic sequence and Evolution of Marine Cyanophage P60: a New insight on lytic and lysogenic phages.  Applied and Environ. Microbiol. 68: 2589-2594.

Chen Z, and Schneider TD. 2005. Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. NAR 33: 6172-6187.

Cheng N, Wu W, Watts NR, Steven AC.  2014.  Exploiting radiation damage to map proteins in nucleoprotein complexes:  The internal structure of bacteriophage T7.  J. Struct Biol 185:250-256.

Chevalier, B. S. & Stoddard, B. L. (2001). Homing endonucleases: structural and functional
insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774.

Chibani-Chennoufi S, Bruttin A, Dillmann M-L, and Brussow H. 2004. Phage-Host Interaction: an Ecological Perspective. J. Bact. 186:3677-3686.

Chibani-Chennoufi S. Canchaya C, Bruttin A., and Brussow H. 2004. Comparative genomics of the T4-like Escherichia coli Phage JS98: Implications for the evolution of T4 phages.  J. Bact. 186:827-8286.


Chibani-Chennoufi S, Dillmann M-L, Marvin-Guy L, Rami-Shojaei S, and Brüssow H.   2004. Lactobacillus plantarum Bacteriophage LP65: a New Member of the SPO1-Like Genus of the Family Myoviridae. J. Bact. 186: 7069-7083.

Choi KH, McPartland J, Kaganman I, Bowman VD, Rothman-Denes LB, Rossmann MG. 2008. Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4.  JMB 378:726-736.

Chopin A, Bolotin A, Sorokin A, et al.  Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage  populations. NUCLEIC ACIDS RES 29 (3): 644-651 FEB 1 2001.

Christiansen, B., Brondsted, L., Vogensen, F. K. & Hammer, K. (1996). A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 178, 5164-5173. Chung YB, Nardone C, Hinkle DC.  1990.  Bacteriophage T7 DNA packaging. III. A "hairpin" end formed on T7 concatemers may be an intermediate in the processing reaction.  J Mol Biol.216:939-48. Clark S, Losick R, Pero J. 1974. New RNA polymerase from Bacillus subtilis infected with phage PBS2. Nature 252:21-24. UTHSCSA Link. Clark AJ. Inwood W. Cloutier T. Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. Journal of Molecular Biology. 311(4):657-79, 2001 Cohen DN, Sham YY, Haugstad GD, Xiang Y, Rossmann MG, Anderson DL, Popham DL.  2009.  Shared catalysis in virus entry and bacterioal cell wall depolymerization.  J. Mol. Biol. 387:  607-618. PMID 19361422.
Comeau AM, and Krisch HM. 2005. War is peace - dispatches from the bacterial and phage killing fields. Curr. Opin. Microbiol. 8: 488-494. Comeau AM., Bertrand C, Letarov A, Tetart F, and Kirsch HM. 2007. Molecular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery. Virology 362:384-396,UTHSCSA Link.


Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC. 2001. Virus maturation involving large subunit rotations and local refolding.  Science 27: 744-748.


Crutz-Le Coq AM, Cesselin B, Commissaire J, and Anba J. 2002. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages.  Microbiology 148(4): 985-1001.

Cuervo A, Pulido-Cid M, Chagoyen M, Arranz R, Gonzalez-Garcia VA, Garcia-Doval C, Caston JR, Valpuesta JM, van Raaij MJ, Martin-Benito J. and Carrascosa JL.  Structural characterization of the bacteriophage T7 tail machinery.  J. Biol. Chem. 288:26290-26299. PMID 23884409
Davey MJ, Funnell BE. 1997. Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J. Biol. Chem. 272 (24): 15286-15292. Davidson, A. & Gold, M. (1992). A novel in vitro DNA packaging system demonstrating a direct role for the bacteriophage l FI gene product. Virology, 161, 305-315.


Davidson, A. & Gold, M. (1992). Mutations abolishing the endonuclease activity of bacteriophage l terminase lie in two distict regions of the A gene,
one of which may encode a leucine zipper DNA binding domain. Virology 189, 21-30.


Depping R, Lohaus C, Meyer HE, Ruger W. 2005. The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: Target proteins identified. BBRC 335: 1217-1223.


Desiere, F., Lucchini, S. & Brussow, H. (1998). Evolution of Streptococcus thermophilus
bacteriophage genomes by modular exchanges followed by point mutations and small deletions and
insertions. Virology 241, 345-356.

Desiere F. Lucchini S. Brussow H.  1999.  Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21.Virology. 260(2):244-53.

  • Says gene map similar to lambda phage is absence of sequence similarity.
  • Contains a ClpP protease family member.

  • Desiere F, Pridmore RD, and Brussow H. 2000. Comparative Genomics of the Late Gene Cluster from Lactobacillus Phages.
    Virology 275, 294-305.

    Desiere F, Mahanivong C, Hillier AJ, et al. Comparative genomics of lactococcal phages: Insight from the complete genome sequence of Lactococcus lactis phage BK5-T. VIROLOGY 283 (2): 240-252 MAY 10 2001. Desplats C, Krisch HM. 2003. The diversity and evolution of the T4-type bacteriophages. Research in Microbiology 154: 259-267. UTHSCSA Link.
  • Adds the exo-T evens to the schizo T-evens, etc.
  • Hélène Deveau, Rodolphe Barrangou, Josiane E. Garneau, Jessica Labonté, Christophe Fremaux, Patrick Boyaval, Dennis A. Romero, Philippe Horvath, and Sylvain Moineau. 2008. Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J Bacteriol. 2008 February; 190(4): 1390–1400
    Dittmer A, Drach JC, Townsend LB, Fischer A, and Bogner E. 2005. Interaction of the putative human cytomegalovirus portal protein pUL104 with the large terminase subunit pUL56 and its inhibition by benzimidazole-D-ribonucleosides. JOURNAL OF VIROLOGY 79 (23): 14660-14667UTHSCSA Link. Djordjevic GM, Klaenhammer TR. 1997.  Bacteriophage-triggered defense systems: Phage adaptation and design improvements. APPL ENVIRON MICROB 63 (11): 4370-4376. Dobbins AT, Matthew G Jr., Basham DA, Ford ME, Houtz JM, Pedulla ML, Lawrence JG, Hatfull GF, and Hendrix RW.  2004. Complete genomic sequence of the virulent Salmonella bacteriophage SP6.  J. Bact 186: 1933-1944. Domotor D Becsagh P Rakhely G Schneider G Kovacs T  2012.  Complete genomic sequence of Erwinia amylovora phage phiEaH2. J. Virol. 86: 10899.  PMID 22966191.


    Draper B, Rao VB. 2007. An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. J. Mol. Biol. 369:79-94. UTHSCSA Link.

    Duda RL, Martincic K, and Hendrix RW. 1995. Genetic basis of bacteriophage HK97 prohead assembly. J. Mol. Biol. 247: 636-647.

    Duda A, Hendrix RW, Huang WM, Conway JF.  2006. Shared architecture of bacteriophage SPO1 and herpesvirus capsids.  Curr. Biol. 16: 440.


    Duffy C. Feiss M. 2002. The Large Subunit of Bacteriophage lambda's Terminase Plays a Role in DNA
    Translocation and Packaging Termination. J. Mol. Biol. 316(3):547-61.


    Duplessis M, Moineau S . 2001. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Micro. 41 (2): 325-336.


    Duplessis M, Russell WM, Romero DA, Moineau S. 2005. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray.  Vir. 340: 192-208.


    Ebersbach G, Gerdes K. 2001. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. PNAS 98 (26): 15078-15083.

    Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755-763.

    Edgar R, Chattoraj DK, Yarmolinsky M.  2001. Pairing of P1 plasmid partition sites by ParB. Mol. Micro. 42 (5): 1363-1370.

    Effantin G, Boulanger P, Neumann E, Letellier L, Conway JF. 2006. Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships.  J. Mol. Biol. 361:993-1002.

    Endy D, You L, Yin J, and Molineux IJ. 2000. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes.  Proc. Natl. Acad. Sci. USA. 97: 5375-5380.


    Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P. 2005. Therapeutic effects of bacteriophage Cp1-1 Lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents and Chemotherapy 49: 4789-4792.

    Esposito D. Fitzmaurice WP. Benjamin RC. Goodman SD. Waldman AS. Scocca JJ. The complete
    nucleotide sequence of bacteriophage HP1 DNA. Nucleic Acids Research. 24(12):2360-8, 1996.

    Fedorova O, Zingler N. 2007. Group II introns: structure, folding and splicing mechanism. Biol. Chem 388: 665-678.

    Filchikov MV, Osmakov DI, Logovskaya LV, Sykilinda NN, Kadykov VA, Kurochkina LP, Mesyanzhinov VV, Bernal RA, Miroshnkkov KA. 2009. Pseudomonas aeruginosa bacteriophage SN: 3D-reconstruction of the capsid and identification of surface proteins by electron microscopy.  Russian J. of Bioorganic Chemistry 35:728-733 link.

    Filée J, Forterre P & Laurent J. 2003. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies.  Res. Microbiol. 154:237-243. PMID: 12798227. UTHSCSA Link.

    Filée J Forterre P Tang S-L Laurent J (2002) Evolution if DNA polymerase families: Evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54: 763-773.  PMID 12029358.


    Filee J, and Forterre P. 2005. Viral proteins functioning in organelles: a cryptic origin? Trends. Microbiol. 13: 510-513.

    Filée, J., Bapteste, E., Susko, E. and Krisch, H.M. (2006) A selective barrier to horizontal gene transfer in the T4-type bacteriophages that has preserved a core genome with the viral replication and structural genes. Mol Biol Evol. 23:1688-96.  PMID: 16782763. UTHSCSA Link. Firczuk M, Mucha A, Bochtler. 2005. Crystal structures of active LytM. J. Mol. Biol. 254:578-590. Fischetti VA. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends in Microbiol. 13:491-496. F. J. M. Mojica, C. Díez-Villaseñor, J. García-Martínez and C. Almendros. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733-740; DOI  10.1099/mic.0.023960-0.

    Fokine A, Battisti AJ, Bowman VD, Efimov AV, Kurochkina LP, Chipman PR, Mesyanzhinov VV, Rossmann MG. 2007. Cryo-EM study of the Pseudomonas Bacteriophage phiKZ. Structure 15:1099-1104. UTHSCSA Link. Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG. 2005.  Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97
    point to a common ancestry. PNAS 102: 7163-7168.
     

    Fokine A, Kostyuchenko VA, Efimov AV, Kurochkina LP, Sykilinda NN, Robben J, Volckaert G, Hoenger A, Chipman PR, Battisti AJ., Rossmann MG, Mesyanzhinov VV. 2005. A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head. J. Mol. Biol. 352:117-124. UTHSCSA Link.

    Fokine A, Battisti AJ, Kostyuchenko VA, Black LW, Rossmann MG. 2006.  Cryo-EM structure of a bacteriophage T4 gp24 bypass mutant: The evolution of pentameric vertex proteins in icosahedral viruses. J Struct Biol. 2006 Feb 21; [Epub ahead of print]

    Fokine A, Miroshnikov KA, Shneider MM, Mesyanzhinov W, Rossmann MG. 2008. Structure of the bacteriphage phiKZ lytic transglycosylase gp144.  J. Biol. Chem. 14:7272-7250.

    Ford ME. Stenstrom C. Hendrix RW. Hatfull GF. Mycobacteriophage TM4: genome structure and gene expression.
    Tubercle & Lung Disease. 79(2):63-73, 1998.. UI: 20110038.

    Forterre P. New viruses for the new millennium. TRENDS MICROBIOL 9 (3): 114-114 MAR 2001.

    Forterre P. 2002. The origin of DNA genomes and DNA replication proteins. Curr. Opin. in Microbiol. 5:525-532.  UTHSCSA Link.

    Forterre P. 2006. The origin of viruses and their possible roles in major evolutionary transitions.  Virus Research 117: 5-16.  UTHSCSA Link.


    Foschino R, Venturelli E, Picozzi C. 2005. Isolation and characterization of a virulent Lactobacillus sanfranciscensis Bacteriophage and Its impact on microbial population in sourdough. Curr. Microbiol. 51: 413-418.

    Franklin, MC, Wang J, Steitz TA. 2001. Structure of the replicating complex of a Pol alpha Family DNA polymerase. Cell 105: 657-667UTHSCSA Link. Pubmed.
    Fraser JS, Yu Z, Maxwell KL, Davidson AR. 2006.  Ig-like domains on bacteriophages: a tail of promiscuity and deceit.  J. Mol. Biol. 359:496-507. PMID 16631788.

    Frick DN, Richardson CC.  2001. DNA primases. Ann. Rev. Biochem. 70: 39-80.

    Frick DN, Richardson CC.  1999. Interaction of bacteriophage T7 gene 4 primase with its template recognition site. J. Biol. Chem. 274 (50): 35889-35898.

    Fuhrman JA. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548. Fu X, Walter MH, Paredes A, Morais MC, Liu J.  2011.  The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography.  Virology 421:141-148. PMID 22018785. Fu C, Johnson JE.  2012. Structure and cell biology of archael virus STIV. Curr. Opin. Virol. 2:122-127.


    Fujii,Y., Kubo,T., Ishikawa,H. and Sasaki,T. 2004. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem. Biophys. Res. Commun. 317 (4), 1183-1188.


    Gadaleta P, Zorzopulos J. 1997. Kluyvera bacteriophage Kvp1: a new member of the Podoviridae family phylogenetically related to the coliphage T7. Virus Res. 51 (1): 43-52.

    Gaidelyte A, Cvirkaite-Krupovic V, Daugelavicius R, Bamford JKH, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Baillus thuringiensis. J. Bact 188: 5925-5934.

    Gan HM, Sieo CC, Tang SGH, Omar AR, and Ho YW.  2013.  The complete genome sequence of EC1-UPM, a novel N4-like bacteriophage that infects Escherichia coli O78:K80.  Virol. J. 10:308. PMID 24134834.

    Gan L, Speir JA, Conway JF, Lander G, Cheng N, Firek BA, Hendrix RW, Duda RL, Liljas L, and Johnson JE. 2006. Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM.  Structure 14: 1655-1665. Garcis LR Molineux IJ (1995) Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli.  J. Bacteriol. 177:4066-4076.
    Ghigo JM. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442-445.

    Gilcrease EB, Winn-Stapley DA, Hewitt FC, Joss L, Casjens SR. 2005. Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization.  J. Bact. 187:2050-2057.

    Gipson, P, Baker ML, Raytcheva D, Haase-Pettingell C, Piret J, King JA, and Chiu W. 2013.  Protruding knob-like proteins violate local symmetries in an icosahedral marine virus.  Nat. Commun. 5:4278. 



    Goodridge, LD.  2004. Bacteriophage biocontrol of plant pathogens: fact or fiction?  Trends Biotechnol 22: 384-385.


    Guash A, Pous J, Ibarra B, Gomis-Ruth FX, Valpuesta JM, Sousa N, Carrascosa JL, coll M. 2002 Detaild architecture of a DNA translocating machine: the high-resolution structure of the bacteriphage phi 29 connector particle. J. Mol. Biol. 315, 663-676.


    Girons,I.S., Bourhy,P., Ottone,C., Picardeau,M., Yelton,D., Hendrix,R.W., Glaser,P. and Charon,N. 2000. The LE1 bacteriophage replicates as a plasmid within Leptospira biflexa: construction of an L. biflexa-Escherichia coli shuttle vector. J. Bact. 182 (20), 5700-5705.

    Gonzales-Huici V, Sala M, Hermoso JM. 2004. The push-pull mechanism of bacteriophage Phi29 DNA injection. Mol. Microbiol 52: 529-540.

    Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA. 1990. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1.  Cell. 63(2):417-24.

    Gordon GS, Wright A. 2000. DNA segregation in bacteria. Ann. Rev. Micro. 54: 681-708.

    Guan C, and Kumar S. 2005.  A single catalytic domain of the junction-resolving enzyme T7 endonuclease I is a non-specific nicking endonuclease.  NAR 33: 6225-6234. Guo F, Liu Z, Vago F, Ren Y, Wu W, et al. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Proc Nat'l Acad Sci USA. 2013;110:6811–6. PMID: 23580619.

    Guo P, Zhang C, Chen C, Trottier M, Garver K. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 1998; 2: 149–155.

    Guo, P., Erickson, S., and Anderson, D.L. (1987). A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236: 690–694. UTHSCSA link.

    Haggard-Liungquist E, Jacobsen E, Rishovd S, Six EW, Nilssen O, Sunshine MG, Lindqvist BH, Kim K-J, Barreiro V, Koonin EV, Calendar R. 1995. Bacteriophage P2: Genes Involved in Baseplate Assembly. Vir. 213: 109-121. UTHSCSA Link. Hambly E, Tetart F, Desplats C, Wilson WH, Krisch HM, Mann NH.2001. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci U S A. 98(20):11411-6. Hamilton G. 2006. virology: the gene weavers.  Nature 441:683-685.

    Handa N, and Kobayashi I. 2005 Type III Restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function. J. Bact. 187: 7362-7373.

    Hang JQ, Tack BF, Feiss M. 2000. ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging:  Identification of ATP-interactive amino acids. J. Mol. Biol.  302: 777-795. Hang J, Catalano C, Feiss M. 2001. The functiona asymmetry of cosN, the nicking site for bacteriophage lambda DNA packaging, is dependent on the terminase binding site, cosB.  Biochem. 40: 13370-13377.



    Harcombe WR, Bull JJ. 2005. Impact of phages on two-species bacterial communities. Appl. Env. Microbiol. 71: 5254-5259.


    Hardies SC, Comeau AM, Serwer P, and Suttle CA. 2003.The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment.Virology 310 (2), 199-372.

    Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V, Ulbrich P, Pecenkova T, Rebrekov D, Milgram A, Mazur M, Cox R, Kyrpides N, Ivanova N, Kapatral V, Los T, Lykidis A, Mikhailova N, Reznik G, Vasieva O, Fonstein M. 2001. Photosyn. Res. 70: 43-52. Heineman RH, Molineux IJ, Bull JJ. 2005. Evolutionary robustness of an optimal phenotype: re-evolution of lysis in a bacteriophage deleted for its lysin gene.  J. Mol. Evol. 61: 181-191. Helgstrand C, Wikoff W, Duda RL, Hendrix RW, Johnson JE, and Liljas L. 2003. The refined structure of a protein catenane: The KH97 bacteriophage capsid at 3.44 A resolution.  J. Mol. Biol. 334: 885-899.


    Hendrix, R.W. (1978) Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci USA 75: 4779–4783.

  • The original rotating portal observation.
  • Hendrix RW. 1999. Evolution: the long evolutionary reach of viruses. Curr. Biol.. 9:R914-R917. UTHSCSA Link.


    Hendrix R.W. (1998) Bacteriophage DNA Packaging: RNA Gears in a DNA Transport Machine. Cell 94:147-150. UTHSCSA link.


    Hendrix RW. Lawrence JG. Hatfull GF. Casjens S. 2000, The origins and ongoing evolution of viruses. Trends in Microbiology. 8(11):504-8.


    Hendrix RW. Smith MC. Burns RN. Ford ME. Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages
    and prophages: all the world's a phage.  Proceedings of the National Academy of Sciences of the United
    States of America. 96(5):2192-7. UI: 99162580.  UTHSCSA Link.

  • Strongly features the statement that phage do not have equal access to the pool.  They clarify this as an issue of host range.
  • This is the citation that Hendrix gives to justify deeper relationships among phage types than the impression given by frequent isolation of phages with little sequence similarity.
  • More literature on mosaic tail fibers:
  • Haggard-Ljungquist, E., Halling, C. & Calendar, R. (1992) J. Bacteriol. 174, 1462-1477.
  • Sandmeier, H., Iida, S. & Arber, W. (1992) J. Bacteriol. 174, 3936-3944.
  • Tetart, F., Repoila, F., Monod, C. & Krisch, H. M. (1996) J. Mol. Biol. 258, 726-731.
  • Monod, C., Repoila, F., Kutateladze, M., Tetart, F. & Krisch, H. M. (1997) J. Mol. Biol. 267, 237-249.
  • Shows homology relationships among the groups lambdoid (lambda, HK97, HK022),  phi C31 (of Streptomyces),  mycophages (L5, D29), crytpic mycophages (phi Rv1, phi Rv2), and phi flu (of Haemophilus).
  • Notes that the coli lambdoid group was not recognized to have affinity with the mycophages until phi C31 showed up with strong affinities to both (although apparently in different sets of genes).
  • Shows a few relations to genes in other phage:
  • TM4 primase to mycophage and phi C31.
  • Also P4 primase to phi C31.
  • T4 nucleotide kinase to phi C31.
  • T4 and P2 tail fibers to lambdoid group.
  • HP1 tail fiber to phi flu.
  • SPP1 and PBSX terminases to phi flu.
  • Sfi21 anti repressor to phi flu.
  • TM4 L5 and tail proteins to mycophages.
  • rlt and TM4 portal protein to mycophages.
  • Other than T4, are any of these not temperate?
  • For method of horizontal exchange, cites 16k per Mya acquired by E. coli by horizontal transfer, citing Lawrence, J. G. & Ochman, H. (1998) Proc. Natl. Acad. Sci. USA 95, 9413-9417; hence their model is strongly biased towards temperate phage. They think exhange by coinfection is vigorous, but confined along host lines.
  • Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, Korchevskii R, Robben J, Mesyanzhinov V, Krylov VN, and Volckaert G. 2005. Genome comparison of Pseudomonas aeruginosa large phages.  J. Mol. Biol. 354:536-545. UTHSCSA Link


    Hertwig,S., Klein,I., Schmidt,V., Beck,S., Hammerl,J.A. and Appel,B. 2003.  Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54. J. Mol. Biol. 331, 605-622.

    Hoeprich, S. & Guo, P. (2002). Computer modeling of three-dimensional structure of DNA-packaging RNA(pRNA) monomer. Dimer, and hexamer of
    Phi29 DNA packaging motor. J. Biol. Chem. 277, 20794–20803.

    Hollis T, Stattel JM, Walther DS, Richardson CC, Ellenberger T. 2001. Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. PNAS 98 (17): 9557-9562.

    Homa FL. Brown JC. Capsid assembly and DNA packaging in herpes simplex virus.
    Reviews in Medical Virology. 7(2):107-122, 1997.

    Hoskisson PA, and Smith MCM. (2007) Hypervariation and phase variation in the bacteriophage 'resistome'.  Curr. Opin. in Microbiol. 10:396-400. UTHSCSA Link.

    Hu B Margolin W Molineux IJ Liu J (2013) The bacteriophage t7 virion undergoes extensive structural remodeling during infection.  Science 339:576-579.  PMID 23306440.

    Hwang, Y., Catalano, C. E. & Feiss, M. (1996). Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme
    of bacteriophage l. Biochemistry, 35, 2796-2803. UTHSCSA Link.


    Isidro A, Henriques AO, and Tavares P. 2004. The portal protein plasy essential roles at different steps in the SPP1 DNA packaging process. Virology 322: 253-263.

    Iyer, L.M., Makarova, K.S., Koonin, E.V., and Aravind, L. (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of  chromosome segregation, cell division, and viral capsid packaging. Nucleic Acids Res 32: 5260–5279. Iyer LM, Koonin EV, Leipe DD, Aravind L. 2005. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucl. Acids Res. 15: 3875-3876.

    Jang HB Fagutao FF Nho SW Park SB Cha IS Yu JE Lee JS IM SP Aoki T Jung TS.  2013.  Phylogenomic network and comparative genomics reveal a diverged member of the phiKZ-related group, Marine Vibrio phage JM-2012.  J. Virol 87: 12866-12878.  PMID
    24067958

    Jardine PJ and Anderson DL. 2006. DNA packaging in double-stranded phages.  In The Bacteriophages (R. Calendar), Oxford Univ. Press, New York.

    Jardine PJ, Coombs DH. 1998. Capsid expansion follows the initiation of DNA packaging in bacteriophage T4.  J. Mol. Biol. 284:661-672.

    Jiang W, Chang J, Jakana J, Weigele P, King J, and Chiu W.2006. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus  NATURE 439 (7076): 612-616. UTHSCSA Link.

    Johnson JE, and Chiu W. DNA packaging and delivery machines in tailed bacteriophages.  Curr. Opin. Struct. Biol. 17: 237-243. PMID 17395453.


    Juhala RJ. Ford ME. Duda RL. Youlton A. Hatfull GF. Hendrix RW. 2000.  Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:27-51.


    Kakikawa, M., Oki, M., Tadokoro, H., Nakamura, S., Taketo, A. & Kodaira, K. (1996).
    Cloning and nucleotide sequence of the major capsid proteins of Lactobacillus bacteriophage phi
    gle. Gene 175, 157-165.

    Kalinov DE, Tuma R, and Mancini. 2006. Hexameric molecular motors: P4 packaging ATPase unravels the mechanism.  Cell Mol. Life Sci. 63: 1095-1105. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossman MG..  2002.  The structure of the bacteriophage T4 cell-puncturing device. Nature 415: 553-557. UTHSCSA Link.


    Kanamaur S, Kondabaqil K, Rossmann MG, Rao VB. 2004. The functional domains of bacteriophage T4 terminase. J. Biol. Chem. 279: 40795-40801.


    Kaneko J. Kimura T. Narita S. Tomita T. Kamio Y. Complete nucleotide sequence and molecular
    characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes.  Gene 215(1):57-67, 1998

    Karam J, Miller E. 2010. Bacteriophage T4 and its relatives (A series of critical reviews). Virol. J. 7:288-298;355-360.

    Karttunen J, Mantynen S, Ihalainen TO, Bamford JK, Osanen HM. 2015.  Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1.  Virology 482:225-233. PMID 25880114.

    Kashlev M, Nudler E, Goldfarb A, White T, Kutter E. (1993). Bacteriophage-T4 alc protein - A transcription termination factor sensing local modification of DNA. CELL  75: 147-154.

    Katsura, I. & Hendrix, R. W. (1984). Length determination in bacteriophage lambda tails. Cell
    39, 691-698.

    Kazmierczak KM, Davydova EK, Mustaev AA, Rothman-Denes LB. 2002. The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases.  EMBO J. 21: 5815-5823.


    Kim YW, Jang SH, Hong BS, Lim WJ, Kim CW, Sung HC, Chang HI.
    Circular permutation of the DNA genome of temperate bacteriophage phi FC1 from Enterococcus faecalis KBL703.
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY 9 (4): 457-463 AUG 1999.

    Kemp P, Garcia LR, and Molineux IJ. 2005.  Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307-317.
    Kiljunen S Hakala K Pinta E Huttenen S Pluta P Gador A Lonnberg H Skurnik M. 2005. Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine.  Microbiology 151 (PT12): 4093-4102. PMID 16339954.

    Klimuk E, Akulenko N, Makarova KS, Ceyssens PJ, Volchenkov, I, Lavigne R, Severinov K.  2013.  Host RNA polymerase inhibitors encoded by phiKMV-like phages of Pseudomonas.  Vir. 436:67-74.  PMID 23127595.

    Kimura M and Hisao Fujisawa H. 1991. Dissection of functional domains of the packaging protein of bacteriophage T3 by site-directed mutagenesis. Vir. 180: 709-715. UTHSCSA Link. Kimura K. and Itoh Y. 2003. Characterization of Poly-gamma-Glutamate Hydrolase Encoded by a Bacteriophage Genome: Possible Role in Phage Infection of Bacillus subtilis Encapsulated with Poly-gamma-Glutamate. Appl. Environ. Microbiol. 69 (5), 2491-2497. Kondabagil KR, Rao VB. 2006. J. Mol. Biol. 358: 67-82. A critical coiled coil motif in the small terminase, gp16, from bacteriophage T4: Insights into DNA packaging initiation and assembly of packaging motor. J. Mol. Biol. 358: 67-82.


    Kondabaqil KR, Zhanq Z, Rao VB. 2006. The DNA Translocating ATPase of Bacteriophage T4 Packaging Motor. JMB Aug 25 2006, Epub ahead of print.

    Kira S Makarova, Nick V Grishin, Svetlana A Shabalina, Yuri I Wolf and Eugene V Koonin. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct 2006, 1:7doi:10.1186/1745-6150-1-7

    Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, Arisaka F, Vadim V Mesyanzhinov VV,  Michael G Rossmann MG. 2003. Three-dimensional structure of bacteriophage T4
    baseplate. Nat. Str. Biol. 10, 688–693UTHSCSA link.

    Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG. 2005. The tail structure of bacteriophage T4 and its mechanism of contraction.  Nat Struct. Mol. Biol. 12:810-813.

    Koti JS, Morais MC, Rajagopal R, Owen BA, McMurray CT, Anderson DL. 2008.  DNA packaging motor assembly intermediate of bacteriophage phi29.  J. Mol. Biol. 381:1114-1132.  PMID 18674782.

    Kovalyova,I.V. and Kropinski,A.M.  2003.  The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida-evidence for close relationship to the T7 group. Virology 311 (2), 305-315.


    Kropinski AM. Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J BACTERIOL 182 (21): 6066-6074 NOV 2000.*

    Krupovic M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397(1):144–160.  PMID 20109464.

    Krupovic M, Spang A, Gribaldo S, Forterre P, Schleper C (2011) A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochem Soc Trans 39(1):82–88. PMID 21265751.
    Krylov VN, Smirnova TA, Minenkova IB, Plotnikova TG, Zhazikov IZ, and Khrenova EA. 1984. Pseudomonas bacteriphage phiKZ contains an innter body in its capsid. Can. J. Microbiol 30: 758-762.

    Krylov VN, Bourkaltseva MV, Sykilinda NN, Pleteneva EA, Shaburova OV, Dadykov VA, Miller S, Beibl M. 2004. Comparisons of the genomes of new giant phages isolated from environmental Pseudomonas aeruginosa strains of different regions. Russian J. Genet. 40: 363-368. Krylov VN, Pleteneva EA, Lavigne R, Hertveldt K, Volckaert G, Sernova NV, Georgopoulos C, Korchevskii RV, Kurochkina LP, and Mesyanzhinov VV. 2005 Comparison of the genome for phylogentically related bacteriophages phiKZ and EL of Pseudomonas aeruginosa: Evolutionary aspectes and minimal genome size. Russian J. Genet. 41:356-365.

    Kuebler D, Rao VB. 1998. Functional analysis of the DNA-packaging/terminase protein gp17 from bacteriophage T4. J. Mol. Biol. 281: 803-814. UTHSCSA Link.


    Kurochkina LP, Vishnevskiy AY, Zhemaeva LV, Sykilinda NN, Strelkov SV, Mesyanzhinov VV.2006.  Structure, stability, and biological activity of bacteriophage T4 gene product 9 probed with mutagenesis and monoclonal antibodies. J Struct Biol. 2006 May;154(2):122-9.

    Kusakabe T, Richardson CC.  1996. The role of the zinc motif in sequence recognition by DNA primases. J. Biol. Chem. 271 (32): 19563-19570. Kutter E, Gachechiladze K, Poglazov A, Marusich E, Shneider M, Aronsson P, Napuli A, Porter D, Mesyanzhinov V. (1995) Virus Genes 11: 285-297. Kulikov E, Kropinski AM, Golomidova A, Linqohr E, Govorun V, Serebryakova M, Prokhorov N, Letarova M, Manykin A, Stroskaya A, Letarov A.  2012.  Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C.  Virology 426:93-99. PMID 22341309.
    Kwan T, Liu J, Dubow M, Gros P. and Pelletier J. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102 (14): 5174-5179.  Supporting information at the PNAS website. Tony Kwan, Jing Liu, Michael DuBow, Philippe Gros, and Jerry Pelletier, 2006. Comparative Genomic Analysis of 18 Pseudomonas aeruginosa Bacteriophages.  J. Bacteriol. 188: 1184-1187. UTHSCSA Link.
    Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P, Poliakov A, Potter CS, Carragher B, Johnson JE. 2006. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312: 1791-1795.

    Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE.  2009. The P22 tiail machine at subnanometer resolution reveals the architecture of an infection conduit.  Structure 17: 789-799.

    Lander GC Baudoux AC Azam F Potter CS Carragher B Johnson JE.  2012.  Capsomer dynamics and stabilization in the T=12 marine bacteriophage SIO-2 and its procapsid studied by CryoEM.  Structure 20:498-503.  PMID 22405008

    Landthaler,M. and Shub,D.A. 1999. Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. U.S.A. 96 (12), 7005-7010.

    Lavigne R, Noben JP, Hertveldt K, Ceyssens PJ, Briers Y, Dumont D, Roucourt B, Krylov VN, Mesyanzhinov VV, Robben J, Volckaert G.  2006.  The structural proteome of Pseudomonas aeruginaso bacteriophage phiKMV. Microbiology 152(Pt 2): 529-534.
    Lavigne R Seto D Mahadevan P Ackermann HW Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis fo the Podoviridae using BLASTP-based tools. Res. Microbiol. 159:406-414. PMID 18555669.
    Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G. 2003. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa.  Virology. 312: 49-59. Lawrence JG, Hatfull GF, Hendrix RW. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bact. 184: 4891-4905. UTHSCSA Link.


    Lazarevic V. Dusterhoft A. Soldo B. Hilbert H. Mauel C. Karamata D. 1999. Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology. 145 ( Pt 5):1055-67. *

    Lazarevic,V., Soldo,B., Dusterhoft,A., Hilbert,H., Mauel,C. and Karamata,D. 1998.  Introns and intein coding sequence in the ribonucleotide reductase genes of Bacillus subtilis temperate bacteriophage SPbeta. Proc. Natl. Acad. Sci. U.S.A. 95 (4), 1692-1697.

    Lebedev, AA ; Vagin, A ; Orlova, EV ; Dodson, EJ ; Tavares, P. 2005. Crystal structure of the portal protein from bacteriophage SPP1 and model for DNA translocation FEBS JOURNAL 272: 334-334 Suppl. Lecoutere E, Ceyssens PJ, Miroshikov KA, Mesyanzhinov VV, Krylov VN, Noben JP, Robben J, Hertveldt K, Volckaert G, Lavigne R. (2009) Identification and comparative analysis of the structural proteiomes of phiKZ and EL, two giant Pseudomonas aeruginosa bacteriophages.  Proteomics 9:3215-3209. PMID 19526553.

    Lee TJ, Guo PX. 2006. Interaction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29
    J. Mol. Biol. 356: 589-599. UTHSCSA LINK.

    Lee J-H Shin H Kim H Ryu S 2011.  Complete genome sequence of Salmonella bacteriophage SPN3US. J. Virol 85:13470-13471.  PMID 26497465.

    Lee, J.-H., J. Bai, H. Shin, Y. Kim, B. Park, S. Heu and S. Ryu (2016). "A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods." Applied and Environmental Microbiology 82(1): 192-201.



    Leffers G, Rao VB.
    Biochemical characterization of an ATPase activity associated with the large packaging subunit gp17 from  bacteriophage T4.
    JOURNAL OF BIOLOGICAL CHEMISTRY   275 (47): 37127-37136 NOV 24 2000. Lehman SM, Kropinski AM, Castle AJ, Svircev AM: Complete genome of the broad-host-range Erwinia amylovora phage fEa21-4 and its relationship to Salmonella phage felix O1.
    Applied & Environmental Microbiology 2009, 75:2139-2147.

    Leiman PG, Battisti AJ, Bowman VD, Stunmeyer K, Muhlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ.  2007.  The structure of bacteriophages K1E and D1-5 esplain processive degradation of polysaccharide capsules and evolution of new host specificities.  J. Mol. Biol. 371:836-849.  PMID 17585937.

    Leiman PG, Shneider MM, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Rossmann MG. 2003. Structure and location of gene product 8 in the bacteriophage T4 baseplate. J. Mol. Biol. 328: 821-833.


    Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV. 2004. Three-dimensional rearrangements of proteins in the tail of bacteriophages T4 on infection of its host.  Cell 118: 419-429.

    Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG. 2006.  Evolution of bacteriophage tails: Structure of T4 gene product 10. J Mol Biol. 2006 May 5;358(3):912-21. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Morphogenesis of the T4 tail and tail fibers.  Virol J. 7:355

    Leskinen K Blasdel BG Lavigne R Skurnik M.  2016.  RNA-sequencing reveais the progression of phage-host interactions beteen phiR1-37 and Yersinia enterocolitica.  Viruses E111. PMID 27110815.

    Letellier L, Boulanger P, de Frutos M, Jacquot P.  2003. Channeling phage DNA through membranes: from in vivo to in vitro.  Research in Microbiology 154: 283-287UTHSCSA Link.


    Lin H, Rao VB, Black LW. 1999. Analysis of capsid portal protein and terminase functional domains: interaction sites required for DNA packaging in bacteriophage T4. J Mol Biol. 1999 Jun 4;289(2):249-60.

    Lingohr EJ, Villegas A, She YM, Ceyssens PJ, and Kropinski AM. 2008. The genome and proteome of the Kluyvera bacteriophage Kvp1 -- another member of the T7-like Autographivirinae.  Virol J. 5:122.

    Lisal J, Tuma R. 2005. Cooperative Mechanism of RNA Packaging Motor.J. Biol. Chem. 280: 23157-23164UTHSCSA link.


    Lisal J, Kainov DE, Lam TT, Emmett MR, Wei H, Gottlieb P, Marshall AG, Tuma R. 2006. Interaction of packaging motor with the polymerase complex of dsRNA bacteriphage. Virology 351: 73-79. UTHSCSA link.


    Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, Dougherty MT, Schmid MF, Osburne MS, Chisholm SW, and Chiu W.  2010. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus.  Nat. Str. & Mol. Biol. 17: 830-837.

    Loessner MJ, Wendlinger G, and Scherer S. 1995. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 16 (6), 1231-1241.


    Loessner MJ, and Scherer S. 1995. Organization and Transcriptional Analysis of the Listeria Phage A511 Late Gene Region Comprising the Major Capsid and Tail Sheath Protein Genes cps and tsh. J. Bact. 177: 6601-6609.
  • X91069
  • Recognized as a myovirus.
  • 10152 bp sequenced segment.  Tail sheath and capsid proteins very divergent from other phages at the time, and were identified by biochemical means.
  • Capsid cleaved after Lys 23 during maturation.
  • Subsequently this structural module found in Staphlococcus phageK and B. subtilis phageD.
  • Host is Listeria monocytogenes.
  • Included biochemical analysis of promters, and definition of a TGCTAGATTATAG -10 box for late transcription in this phage.

  • Loessner MJ, Inman RB, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria  monocytogenes: implications for phage evolution MOL MICROBIOL 35 (2): 324-340 JAN 2000.

    Lopez R. 2004. Streptococcus pneumoniae and its bacteriophages: one long argument. Int. MicroBiology 7: 163-171.


    Lossoarn J Nesbe CL Mercier C Zhaxybayeva O Johnson MS Charchuck R Farasin J Bienvenu N Baudoux AC Michoud G Jebbar M Gelin C.  2015.  Menage a trios: a selfish genetic element uses a virus to propagate within Thermotogales.  Environ Microbiol  1111:1462-2920.  PMID 25630351

    Lubbers, M. W., Waterfield, N. R., Beresford, T. P., Le Page, R. W. & Jarvis, A. W. (1995). Sequencing and analysis
    of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol
    61, 4348-4356.

    Lubbers MW, Schofield K, Waterfield NR, Polzin KM. 1998. Transcription analysis of the prolate-headed lactococcal bacteriophage c2. J. Bact. 180:4487-4496.

    Lucchini, S., Desiere, F. & Brussow, H. (1998). The structural gene module in Streptococcus
    thermophilus bacteriophage phi Sfi11 shows a hierarchy of relatedness to Siphoviridae from a
    wide range of bacterial hosts. Virology 246, 63-73.

    Lucchini S, Desiere F, Brussow H
         Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory
         J VIROL 73 (10): 8647-8656 OCT 1999.


    Luneberg E, Mayer B, Daryab N, Kooistra O, Zahringer U, Rohde M, Swanson J, and Frosch M. 2001.  Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol. Microbiol. 39 (5), 1259-1271.

    Lurz R, Orlova EV, Gunther D, Dube P, Droge A, Weiss F, van Heel M, and Tavares P. 2001. Structural Organisation of the Head-to-tail interface of a bacterial Virus. J. Mol. Biol. 310: 1027-1037. UTHSCSA Link.


    Lysenko EA, Kusnetsov VV. 2005. Plastid RNA polymerases. Mol. Biol. 39 (5): 762-775.

    Madsen PL, Hammer K. 1998. Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology 144 (Pt 8): 2203-2215.

    Maluf NK, and Feiss M. (2006). MicroCommentary: Virus DNA translocation: progress towards a first ascent of Mount Pretty Difficult.  Mol. Micro. 61:1-4.


    Malys N, Chang DY, Baumann RG, Xie D, Black LW. 2002.  A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction.  J Mol Biol. 319(2):289-304.

    Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, and Vanderplasschen A. 2004. Glycosyltransferases encoded by viruses. J. Gen. Vir. 85: 2741-2754.


    Martin AC. Lopez R. Garcia P. Analysis of the complete nucleotide sequence and functional organization of
    the genome of Streptococcus pneumoniae bacteriophage Cp-1. Journal of Virology. 70(6):3678-87, 1996

    Marvik OJ, Jocobsen E, Kokland T, Lindqvist BH. 1994. Bacteriophage P2 and P4 Morphogenesis: Assembly precedes proteolytic processing of the capsid proteins. Vir. 205: 51-65UTHSCSA Link.


    Masui S, Kamoda S, Sasaki T. and Ishikawa H. 2000. Distribution and evolution of bacteriophage WO in Wolbachia, the
    endosymbiont causing sexual alterations in arthropods J. Mol. Evol. 51 (5), 491-497 (2000).

    Matsko N, Klinov D, Manykin A, Demin V, and Klimenko S. 2001. Atomic force microscopy analysis of bacteriophages phiKZ and T4. J. Electron Micros. 50: 417-422.  UTHSCSA Link.

    Matsuzake S, Kuroda M, Kimura S, and Tanaka S. 1999. Major capsid proteins of certian Vibrio and Aeromonas phages are homologous to the equivalent protein gp23*, of coliphage T4. Arch Virol. 144: 1647-1651. Mattila S, Oksanen HM, Bamford JK.  2015.  Probing protein interactions in the membrane-containing virus PRD1.  J. Gen Virol 96(Pt2):453-462.

    McGrath S, Fitzgerald GF, and van Sinderen D. 2002. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43(2) 509.

    McPartland J, Rothman-Denes LB.  2009. The tail sheath of bacteriophage N4 interacts with the Escherichia coli receptor.  J. Bact. 191:525-532. PMID 19011026.

    Mediavilla J. Jain S. Kriakov J. Ford ME. Duda RL. Jacobs WR Jr. Hendrix RW. Hatfull GF. Genome organization
    and characterization of mycobacteriophage Bxb1. Molecular Microbiology. 38(5):955-70, 2000. UI: 20572070

    Meijer, W.J.J., Horcajadas, J.A. and Salas, M. (2001)  Phi29 family of phages. Microbiol. Mol. Biol Rev. 65:261-287. Merabishvilli M, Vandenheuvel D, Kropinski AM, Mast J, De Vos D, Verbeken G, Noben JP, Lavigne R, Vaneechouffe M, Pirnav JP.  2014.  Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.  PLoS One 9:e104853.  PMID 25111143.

    Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnilov KA, Sykilinda NN, and Shneider MM. 2004. REVIEW: Molecular Architecture of Bacteriophage T4.  Biochemistry (MOsc). 69:1190-1202.

    Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, and Volckaert G. 2001. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317:1-19UTHSCSA Link. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, and Rüger W. 2003. Bacteriophage T4 Genome. Micro. Mol. Biol. Rev.  67: 86-156. Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szcypinksi B, and Fraser CM. 2003. Complete genome sequenceof the broad-host-range vibriophage KVP40: Comparative genomics of a T4-related bacteriophage. J. Bact. 185:5220-5233. Mindich L, Qiao X, Qiao J, Onodera S, Romantschuk M, and Hoogstraten D. 1999. Isolation of additional bacteriophagees with genomes of segmented double-stranded RNA. J. Bact 181: 4505-4508.


    Mindich L. 2004. Packaging, replication and recombination of the segmented genomes of bacteriophage phi6 and its relatives. Virus. Res. 101: 83-92.


    Mirold, W. Rabsch, M. Rohde, S. Stender, H. Tschape, H. Russmann et al., Isolation of a
        temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella
        typhimurium strain. Proc. Natl Acad. Sci. USA 96 (1999), pp. 9845–9850.


    MIKKONEN M, ALATOSSAVA T.
    CHARACTERIZATION OF THE GENOME REGION ENCODING STRUCTURAL PROTEINS OF  LACTOBACILLUS-DELBRUECKII SUBSP LACTIS BACTERIOPHAGE-LL-H.
    GENE  151 (1-2): 53-59 DEC 30 1994.

    Mitchell MS, Matsuzaki S, Imai S, Rao VB. 2002. Sequence analysis of bacteriophage T4 DNA packaging terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Res. 30: 4009-4021.

    Mitchell MS, Rao VB. 2004. Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins. Virology 321: 217-221.

    Mitchell MS, Rao VB 2006. Functional analysis of the bacteriophage T4 DNA-packaging ATPase motor.  J Biol Chem. 2006 Jan 6;281(1):518-27.

    Moak, M. & Molineux, I. J. 2000. Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the
    initiation of infection. Mol. Microbiol 37, 345-355. Moldovan R, Chapman-McQuiston E, Wu XL. 2007. On kinetics of phage adsorption. Biophys J. 93:303-315. PMID 17434950.

    Molineux IJ. 2006. Fifty-three years since Hershey and Chase; much ado about pressure but which pressure is it?
    VIROLOGY 344 (1): 221-229. Molineux IJ, Panja D. 2013 Popping the cork: Mechanisms of phage genome ejection.  Nat. Rev. Microbiol. 11:194-204. PMID 23385786.

    Mondigler M, Holtz T, Heller KJ. 1996. Identification of the receptor-binding regions of pb5 proteins of bacteriophages T5 and BF23. Vir 219:19-28.


    Moore SD. Prevelige PE. DNA packaging: a new class of molecular motors. Current
    Biology. 12(3):R96-8, 2002

    Monson R Foulds I Foweraker J Welch M Salmond GPC. (2011) The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients.  Microbiol 157:859-867.

    Morgan GJ. Hatfull GF. Casjens S. Hendrix RW. Bacteriophage Mu Genome Sequence: Analysis and
    Comparison with Mu-like Prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317(3):337-59, 2002 Pubmed 11922669

    Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL. 2005. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of f29. Mol. Cell 18: 149-159UTHSCSA Link. Morais MC, Tao Y, Olson NH, Grimes S, Jardine PJ, Anderson DL, Baker TS, Rossmann MG. 2001. Cryoelectron-microscopy image reconstruction of symmetry mismatches in bacteriophage phi29. J. Str. Biol. 135:38-46.

    Morais MC, Koti JS, Bowman VD, Reyes-Aldrete E, Anderson DL, and Rossmann MG.  2008. Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor.  Structure 16: 1267-1274. PMID 18682228.

    Morita M, Tasaka M, Fujisawa H. 1994. Analysis of functional domains of the packaging proteins of bacteriophage-T3 by site-directed mutagenesis. J. Mol. Biol. 235: 248-259.

    Morita M, Tasaka M, Fujisawa H. 1994. Analysis of functional domains of the packaging proteins of bacgteiophage T3 by site-directed mutagenesis. J. Mol. Biol. 235: 248-259UTHSCSA Link.


    Morita M, Tasaka M, and Fujisawa H. 1995. Analysis of the fine-structure of the prohead binding domain of the packaging protein of bacteriophage-T3 using a hexapeptide, an analog of a prohead binding-site. Vir. 211: 516-524.

    Morita M, Tasaka M, and Fujisawa H. 1995. Structural and functional domains of the large subunit of the bacteriophage-T3 DNA packaging enzyme - Importance of the C-terminal region in prohead binding. J. Mol. Biol 245: 635-644.

    Morozova O, Marra MA. 2008.  Application sof next-generation sequencing technologies in functional genomics.  Genomics 92:255-264.

    Moscoso M, Eritja R, Espinosa M. 1997. Initiation of replication of plasmid pMV158: mechanisms of DNA strand-transfer reactions mediated by the initiator RepB protein.  J Mol Biol 268(5):840-56.

    Mrazek, J. & Karlin, S. (1998). Strand compositional asymmetry in bacterial and large viral
    genomes. Proc Natl Acad Sci USA 95, 3720-3725.

    Mullaney JM, Thompson RB, Gryczynski Z, Black LW. 2000. Green fluorescent protein as a probe of rotational mobility within bacteriophage T4.
    J Virol Methods.  88(1):35-40.

    Muller JJ, Barbitz S, Heinie K, Freiberg A, Seckler R, Heinemann U.  2008.  An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sfi6.  Structure 16: 766.

    Muniesa M, Recktenwald J, Bielaszewska M, Karch H, Schmidt H
    Characterization of a Shiga toxin 2e-converting bacteriophage from an Escherichia coli strain of human origin.     INFECTION AND IMMUNITY  68 (9): 4850-4855 SEP 2000 Narita S, Kaneko J, Chiba J, et al. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phi SLT.  Gene 268 (1-2): 195-206 MAY 2 2001. Nelson SW, Benkovic SJ. (2007) The T4 Phage UvsW Protein Contains Both DNA Unwinding and Strand Annealing Activities. J Biol Chem. 282:407-16. PMID: 17092935

    Newcomb, W. W., R. M. Juhas, D. R. Thomsen, F. L. Homa, A. D. Burch, S. K. Weller, and J. C. Brown. 2001. The UL6 gene product forms the portal
    for entry of DNA into the herpes simplex virus capsid. J. Virol. 75:10923–10932UTHSCSA Link.

    Neve H, Zenz KL, Desiere F, Koch A, Heller KJ, and Brussow H. 1998. Comparison of the lysogeny modules from the termperatue Streptococcus thermophilus bacteriophages TP-j34 and Sfi21: Implications for the modular theory of phage evolution.  Virology 241: 61-72. Nilsson AS, Haggard-Ljungquist E. 2001.  Detection of homologous recombination among bacteriophage P2 relatives. MOL PHYLOGENET EVOL 21 (2): 259-269.

    Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD.  2006. Genetic diversity among five T4-like bacteriophages. Virol J. 2006 May 23;3(1):30

    Nossal NG, Makhov AM, Chastain PD 2nd, Jones CE, Griffith JD. (2006)  Architecture of the bacteriophage T4 replication complex revealed with nanoscale biopointers. J Biol Chem. 2006 Nov 13; [Epub ahead of print]  PMID: 17105722

    Nunez-Ramirez R, Robledo Y, Mesa P, Ayora S, Alonso JC, Carazo JM, Donate LE. 2006. Quaternary polymorphism of replicateve helicase G40P: Structural mapping and domain rearrangement. J. Mol. Biol 357: 1063-1076.


    Oakey HJ Cullen BR and Owens L. 2002. The complete nucleotide sequence of the Vibrio harveyi
     bacteriophage VHML. J. Appl. Microbiol. 93 (6), 1089-1098.

    Obregon,V., Garcia,J.L., Garcia,E., Lopez,R. and Garcia,P. 2003. Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J. Bact. 185 (7), 2362-2368.


    S. O’Flaherty, A. Coffey, R. Edwards, W. Meaney, G. F. Fitzgerald and R. P. Ross. 2004. Genome of Staphylococcal Phage K: a New Lineage of Myoviridae Infecting Gram-Positive Bacteria with a Low G+C Content. J.Bact 186: 2862-2871.

    Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, and Hatfull GF. 2005. GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861-873.

    Olia AS, Prevelige PE, Honhson JE, Cingolani G.  2011. Three-dimensional structure of a viral genome-delivery portal vertex.  Nat. Struct. Mol. Biol. 18: 597-603.  PMID 21499245.

    John van der Oost, Matthijs M. Jore, Edze R. Westra, Magnus Lundgren and Stan J.J. Brouns. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes.Trends in Biochemical Sciences
    Volume 34, Issue 8, August 2009, Pages 401-407

    Orlova EV, Dube P, Beckmann E, Zemlin, F, Lurz R, Trautner TA, Tavares P, and van Heel M. 1999. Structure of the 13-fold symmetric portal protein of bacteriophage SPP1. Nat. Str. Biol. 6: 842-846. Ortega ME, Catalano CE. 2006. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor. Biochem. 45: 5180-5189.

    Paddison P, Abedon ST, Dressman HK, Gailbreath K, Tracy J, Mosser E, Neitzel J, Guttman B, Kutter E. (1998)
    The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: A new perspective. Genetics  148: 1539-1550.


    Pajunen MI, Kiljunen SJ, Soderholm MEL, et al.  Complete genomic sequence of the lytic bacteriophage phi YeO3-12 of Yersinia enterocolitica serotype O : 3. J

    Parker ML, Eiserling FA. 1983. Bacteriophage SPO1 Structure and Morphogenesis. I. Tail Structure and Length Regulation. J. Vir. 46: 239-249.

    Parker ML, Eiserling FA. 1983. Bacteriophage SPO1 Structure and Morphogenesis. II. Head Structure and DNA Size. J. Vir. 46: 250-259.

    Parker ML, Eiserling FA. 1983. Bacteriophage SPO1 Structure and Morphogenesis. III. SPO1 Proteins and Synthesis. J. Vir. 46: 260-269.

    Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smithh F, Walter D, Libberton B, Fenton A, Hall N, Brockhurst MA. 2010. Antagonistic coevolution accelerates molecular evolution.  Nature 464:275-278. PMID: 20182425

    Payne M, Oakey J and Owens L. 2004.  The ability of two different Vibrio spp. bacteriophages to infect Vibrio harveyi, Vibrio cholerae and Vibrio mimicus. J. Appl. Microbiol. 97: 663.

    Pedersen M, Østergaard S, Bresciani J, and Vogensen FK.  2000. Mutational Analysis of Two Structural Genes of
    the Temperate Lactococcal Bacteriophage TP901-1 Involved in Tail Length Determination and Baseplate Assembly. Virology 276:315-328.


    Pedulla ML. Ford ME. Houtz JM. Karthikeyan T. Wadsworth C. Lewis JA. Jacobs-Sera D. Falbo J. Gross J. Pannunzio NR. Brucker W. Kumar V. Kandasamy J. Keenan L. Bardarov S. Kriakov J. Lawrence JG. Jacobs WR Jr. Hendrix RW. Hatfull GF. Origins of highly mosaic mycobacteriophage genomes. Cell. 113(2):171-82, 2003.


    Pecenkova T. Benes V. Paces J. Vlcek C. Paces V. Bacteriophage B103: complete DNA sequence of its
    genome and relationship to other Bacillus phages. Gene. 199(1-2):157-63, 1997.

    Petrov AS, Boz MB, Harvey SC.  2007.  The conformation of double-stranded DNA inside bacteriphages depends on capsid size and shape.  J. Struct. biol. 160:241-248.  PMID 17919923.

    Petrov VM and Ratnayaka S and Karam JD.  2010. Genetic insertions and diversifications of the PolB-type DNA polymerase (gp43) of T4-related phages. J. Mol. Biol. 395: 457-474.

    Petrov VM Rathnayaka S Nolan JM Miller ES Karam JD. 2010. Genomes of the T4-related bacteriophages as windows on microbiobial genome evolution.  Virol J.  7:292.  PMID  21092436

    Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD.  2006.Plasticity of the gene functions for DNA replication in the T4-like phages. J. Mol. Biol. 361:46-68.

    Petrov VM, and Karam JD. 2004. Diversity of structure and function of DNA polymerase (gp43) of T4-related bacteriophages.  Biochem. (Mosc.) 69: 1489-1496. UTHSCSA Link


    Petrov, V.M., Nolan, J.M., Bertrand, C., Levy, D., Desplat, C., Krisch H.M. and Karam, J. D. (2006) Plasticity of the gene functions for DNA replication in the T4-like phages.J Mol Biol. 2006 361:46-68. PMID: 16828113.

    Pietila MK, Laurinmaki P, Russell DA, Ko CC, Jacobs-Sera, D, Hendrix RW, Bamford DH, and Butcher SJ.  2013.  Structure of the archaeal head-taiuled virus HSTV-1 completes the HK97 fold story.  PNAS 110:10604-10609. PMID 23733949.

    Pindeda M, Gregory BD, Szczypinski B, Baxter KR, Hochschild A, Miller ES, and Hinton DM. 2004. A family of anti-sigma 70 proteins in T4-type phages and bacteria that are similar to AsiA, a transcription inhibitor and co-activator of bacteriophage T4.  J. Mol. Biol. 344: 1183-1197.

    Ponchon L, Mangenot S, Boulanger P, and Letellier L. 2005. Encapsidation and transfer of phage DNA into host cells: From in vivo to single particles studies.  Biochim Biophys. Acta. 1724: 255-261. Ponchon L, Boulanger P, Labesse G, Letellier L. 2005. The endonuclease domain of bacteriophage terminases belongs to the resolvase/integrase/ribonuclases H superfamily: A bioinformatics analysis validated by a functional study on bacteriophage T5. J. Biol. Chem. 281:5829-5836.

    Pontarollo RA, Rioux CR, and Potter AA. 1997. Cloning and characterization of bacteriophage-like DNA from Haemophilus somnus homologous to phages P2 and HP1. J. Bacteriol. 179: 1872–1879.

    Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz, JM, Jiang W, Chiu W, Hatfull GF, Hendrix RW, and King J. 2007. Genome sequence, structural proteins, and capsid organization of the cyanophage syn5: A "horned" bacteriophage of Marine SynechococcusJ. Mol. Biol. 368: 966-981.


    Prangishvili D, Garrett RA, and Koonin EV.  2006. Evolutionary genomics of archaeal viruses: Unique viral genomes in the third domain of life.  Virus Res. 117:52-67. UTHSCSA Link.

    Proctor, L.M. 1997. Advances in the study of marine viruses. Microsc. Res.  Tech. 37: 136-161.

    Putnam CD, Clancy SB, Tsuruta H, Gonzalez S, Wetmur JG, and Tainer JA. 2001. Structure and mechanism of the RuvB holliday junction branch migration motor. J. Mol. Biol.  311: 297-310.


    Przech, A. J., Yu, D., and Weller, S. K. (2003) Point Mutations in Exon I of the Herpes Simplex Virus Putative Terminase Subunit, UL15, Indicate that the Most Conserved Residues Are Essential for Cleavage and Packaging. J. Virol. 77: 9613–9621.

    Purohit P, Kondev J, Phillips R. 2003. Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. USA 100:3173-3178. Rabkin SD, and Richardson CC. 1988. Initiation of DNA replication at cloned origins of bacteriophage T7. J. Mol. Biol. 204: 903-916.
  • Cites Tamanoi et al., (1980) for identifying the primary ori to a 129 bp fragment at 14.75-15.0.
  • Involvies T7 RNA polymerase promoters phi 1.1A and phi 1.1B followed by a 61 bp 79% A+T segment with 7 copies of TTAA, and a single 3' CTGGG 5' primase recognition site.
  • This paper characerizes secondary origins, defined as origins that begin to function if the primary origin is deleted.
  • The CTGGG is not required.
  • The AT block is required.
  • Radanya EH, Malanoskib G, Nicholas P. Ambulos NP Jr, Friedbergd EC. and Yasbin RE. 1997. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity. Mutation Research/DNA Repair 384: 107-120. Rajagopal BS, Reilly BE, Anderson DL. 1993 Bacillus subtilis mutants defective in bacteriophage phi 29 head assembly.  J Bacteriol. 175:2357-62. PMID: 8096839

    Ramanculov E. Young R. An ancient player unmasked: T4 rI encodes a t-specific antiholin.
    Molecular Microbiology. 41(3):575-83, 2001

    Rao VB, Mitchell MS. 2001. The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4.  J. Mol. Biol. 314 (3): 401-411.

    Rao VB & Feiss M. 2008.  The bacteriphage DNA packaging motor.  Ann. Rev. Genet. 42: 647-681. PMID: 18687036 UTHSCSA Link.

    Didier Raoult, Stéphane Audic, Catherine Robert, Chantal Abergel, Patricia Renesto, Hiroyuki Ogata, Bernard La Scola, Marie Suzan, and Jean-Michel Claverie. 2004. The 1.2-Megabase Genome Sequence of Mimivirus. Science 306: 1344-1350.

    Ravin V. Ravin N. Casjens S. Ford ME. Hatfull GF. Hendrix RW. Genomic sequence and analysis of the atypical
    temperate bacteriophage N15.  Journal of Molecular Biology. 299(1):53-73, 2000. UI: 20328599.

    structural genes similar to bacteriophage lambda. Recktenwald J, Schmidt H. 2002 The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage phi P27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. Infect. Immun. 70 (4): 1896-1908.

    Ren Z, Black LW. 1998. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid.
    Gene. 1998 Jul 30;215(2):439-44.

    Rentas FJ, Rao VB. 2003. Defining the bacteriophage T4 DNA packaging machine: Evidence for a C-terminal DNA cleavage domain in the large terminase/packaging protein gp17.  J. Mol. Biol 334: 37-52.   UTHSCSA Link.

    Rizzo AA, Suhanovsky MM, Baker ML, Fraser LC, Jones LM, Rempel DL, Gross ML, Chiu W. Alexandrescu AT, Teschke CM.  2014.  Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryoEM modeling. Structure 22:830-841. PMID 24836025.

    Rodriguez-Casado A. Moore SD. Prevelige PE Jr. Thomas GJ Jr. Structure of bacteriophage P22 portal protein in relation to assembly: investigation by Raman spectroscopy. Biochemistry. 40(45):13583-91, 2001

    Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, and Azam F. 2000. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages Limnol. Oceanog. 45: 408-418.


    Rohwer F, and Edwards R. 2002. The phage proteomic tree: a genome-based taxonomy for phage.  J. Bact. 184:4529-4535. PMID: 12142423. UTHSCSA Link.

    Romero P, Lopez R, Garcia E.  2004. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Vir.322 (2): 239-252.

    Rossmann MG, Arisaka F, Battisti AJ, Bowman VD, Chipman PR, Fokine A, Hafenstein S, Kanamaru S, Kostyuchenko VA, Mesyanzhinov VV, Shneider MM, Morais MC, Leiman PG, Palermo LM, Parrish CR, Xiao C. (2007) From structure of the complex to understanding of the biology. Acta Crystallogr D Biol Crystallogr. 63(Pt 1):9-16. PMID: 17164521

    Sabehi G Shaulov L Silver DH Yanai I Harel A Lindell D. (2012) A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.  PNAS 109:2037-2042. PMID 22308387.

    Sandegren L, Sjoberg BM. (2006)vSelf-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth-state of the infected bacterium. J Bacteriol. 2006 Nov 22; [Epub ahead of print]  PMID: 17122344

    Saint Girons I, Bourhy P, Ottone C, et al.  The LE1 bacteriophage replicates as a plasmid within Leptospira biflexa: Construction of an L. biflexa-Escherichia coli  shuttle vector J BACTERIOL 182 (20): 5700-5705 OCT 2000.

    Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. 2006. The structure of an RNAi polymerase links RNA silencing and transcription. Plos Biol. 4: e434.


    Savva CGW, Holzenburg A., Bogner. 2004. Insights into the structure of human cytomegalovirus large terminase subunit pUL56. FEBS Lett. 564: 135-140.


    Scheffczik H, Savva CGW, Holzenburg A, et al. 2002. The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucl. Acids Res. 30 (7): 1695-1703.


    Scholl,D., Adhya,S. and Merril,C.R. 2002.  Bacteriophage SP6 Is Closely Related to Phages K1-5, K5, and K1E but Encodes a Tail Protein Very Similar to That of the Distantly Related P22. J. Bacteriol. 184 (10), 2833-2836.

    Searls T, Chen DL, Lan T, McLaughlin LW.  2000. Nucleoside analogue substitutions in the trinucleotide DNA template recognition sequence 3 '-(CTC)-5 ' and their effects on the activity of bacteriophage T7 primase. Biochem. 39 (15):4375-4382. Seegers JF, McGrath S, O'Connell-Motherway M, Arendt EK, van de Guchte M, Creaven M, fitzgerald GF, van Sinderen D. 2004. Molecular and trnascriptional analysis of the temperate lactococcal bacteriophage Tuc2009.  Vir. 239:40-52.

    Selivanov NA, Prilipov AG, Efimov VP, Marusich EI, Mesyanzhinov VV. 1990. Cascade of overlapping late genes in bacteriophage T4. Biomed. Sci. 1: 55-62.

    Sergueev K, Court D, Reaves L, Austin S. 2002. E. coli cell-cycle regulation by bacteriophage lambda.  J. Mol. Biol. 324:297-307.

    Serwer, P. (2003). Models of bacteriophage DNA packaging motors. J. Struct. Biol. 141, 179-188. Serwer P, Hayes SJ, Zaman S, Lieman K, Rolando M, and Hardies SC. 2004. Improved isolation of undersampled bacteriophages: finding of distant terminase genes. Vir. 329: 412–424.

    Shaburova OV Hertveldt K de la Cruz DMA Krylov SV Pleteneva EA Boukaltseva MV Lavigne R Volckaert G and Krylov VN (2006)   Comparison of new giant bacteriophages OBP and Lu11 of soil Pseudomonads with bacteriophages of the φKZ-supergroup of Pseudomonas aeruginosa. Russian Journal of Genetics. 42: 877-885.

    Shen PS Domek MJ Sanz-Garcia E Makaju A Taylor RM Hoggan R Culumber M Oberg C Breakwell DP Prince JT Belnap DM.  2012.  Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T-like supergroup.  J. Virol. PMID 22593163.

    Shibata H, Fujisawa H, and Minagawa T. 1987. Early events in DNA packaging in a defined in vitro system of bacteriophage T3. Vir. 159:250-258.

    Shin H, Lee JH, Ahn CS, Ryu S, Cho BC.  2014.  Complete genome sequence of marine bacterium Pseudoalteromonas phenolica bacteriophage TW1.  Arch. Virol. 159:159-162. PUBMED 23851651.

    Shimizu-Kadota M, Kiwaki M, Sawaki S, et al. 2000. Insertion of bacteriophage phi FSW into the chromosome of Lactobacillus casei strain Shirota (S-1): Characterization of the attachment sites and the integrase gene. Gene 249 (1-2): 127-134.

    Shingaki R, Kasahara Y, Inoue T, Kokeguchi S, Fukui K.  2003.  Chromosome DNA fragmentation and excretion caused by defective prophage gene expression in the early-exponential-phase culture of Bacillus subtilis. Canadian J. Microbiol.  49 (5): 313-325.

    Showe MK, Isobe E, Onorato L.  1976.  Bacteriophage T4 prehead proteinase. II.  Its cleavage from the product of gene 21 and regulation in page-infected cells.  J. Mol. Biol. 107, 55-69.

    D. Shu and P. Guo, Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA. Virology 309 (2003), pp. 108–113.

    Sickmier EA. Zhang R. Joachimiak A. White SW. The MotA transcription factor from
    bacteriophage T4 contains a novel DNA-binding domain: the 'double wing' motif. Molecular Microbiology.
    43(5):1079-88, 2002

    Simpson AA, Tao YZ, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS,Rossmann MG.  2000. Structure of the bacteriophage phi 29 DNA packaging motor. NATURE 408:745-750.

    Simpson AA, Leiman PG, Tao YH, He Y, Badasso MO,  Jardine PJ,  Anderson DL, Rossmann MG. 2001. Structure determination of the head-tail connector of bacteriophage phi 29. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY 57: 1260-1269. UTHSCSA Link.


    Smith, M. C. M., Burns, R. N., Wilson, S. E. & Gregory, M. A. (1999). The complete genome sequence of the Streptomyces temperate phage phi C31: evolutionary relationships to other viruses. Nucl. Acids Res. 27, 2145-2155.*

    Smith MC. Burns N. Sayers JR. Sorrell JA. Casjens SR. Hendrix RW. Bacteriophage collagen. [letter; comment].
    [Comment. Letter] Science. 279(5358):1834, 1998. UI: 98201874.

    Smith, D.E., Tans, S.J., Smith, S.B., Grimes, S., Anderson, D.L., and Bustamante, C. (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413: 748–752. UTHSCSA link.

    Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Hber R.  1997.  Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnoseidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage.  J. Mol. Biol. 267:85-880. PMID 9135118.

    Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, and Muhlenhoff M. 2006.  Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages.  Mol. Microbiol. 60:1123-1135.

    Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, and Ban N.  2008. Structural basis of enzyme encapsulation into a bacterial nanocompartment Nat. Struct. Mol. Biol 15: 939-947. PMID 19172747.

    Rotem Sorek, Victor Kunin & Philip Hugenholtz. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology 6, 181-186 (March 2008) | doi:10.1038/nrmicro1793

    Siponen M, Sciara G, Villion M, Spinelli S, Lichiere J, Cambillau C, Moineau S, Campanacci V. 2009. Crystal structure of ORF12 from Lactococcus lactis phage p2 identifies a tape measure protein chaperone.  J. Bact. 191:728-734. PMID 19047351.

    Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton L, Suomalainen A, Jacobs HT, Zeviani M, Larsson C. 2001. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene LF-like protein localized in mitochondria. Nat. Genetics. 28 (3): 223-231.

    Springman R, Badgett MR, Molineux IJ, Bull JJ. 2005. Gene order constrains adaptations in bacteriophage T7.  Vir. 341:141-52. Stanley E. Fitzgerald GF. Le Marrec C. Fayard B. van Sinderen D. Sequence analysis and characterization
    of phi O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology.
    143 ( Pt 11):3417-29, 1997.

    Steven, A.C., Heymann, J.B., Cheng, N., Trus, B.L., and Conway, J.F. (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 15: 227–236.

    Steven AC, Trus BL, Maizel JV, Unser M, Parry DAD, Wall JS, Hainfeld JF, Studier FW. 1988. Molecular substructure of a viral receptor-recognition protein; The gp17 tail-fiber of bacteriophage T7. JMB 200:351-365. PMID 3259634.


    Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng AS-Y, Peterman MA, Tobias A, and Wei P. 1998.  Genes and Regulatory Sites of the ‘‘Host-Takeover Module’’ in the Terminal Redundancy of Bacillus subtilis Bacteriophage SPO1. Virology 246:329-340.

    Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML. 2009. The genome of Bacillus subtilis bacteriophage SPO1. J. Mol. Biol. 388:48-70.

    Stone, R. 2002. Stalin's Forgotten Cure. Science 298:728-731. Strauch E, Lurz R, Beutin L. 2001.  Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei
         Infect. Immun. 69 (12): 7588-7595.

    Stromsten NJ, Bamford DH, Bamford JK.2005.  In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses.
    J Mol Biol. 348:617-29. PMID: 15826659. UTHSCSA Link.

    Stortelder A, Hendriks J, Buijs JB, Bulthuis J, Gooijer C, van der Vies SM, van der Zwan G. (2006) Hexamerization of the bacteriophage T4 capsid protein gp23 and its W13V mutant studied by time-resolved tryptophan fluorescence. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. 110:25050-8. PMID: 17149929

    Sturrock SS. Dryden DT. Atanasiu C. Dornan J. Bruce S. Cronshaw A. Taylor P. Walkinshaw MD.
    Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7. Acta
    Crystallographica Section D-Biological Crystallography. 57(Pt 11):1652-4, 2001

    Sugden A, Stone R, and Ash C. 2004. Ecology in the Underworld. Science 304:1613.

    Sulakvelidze A. Alavidze Z. Morris JG Jr. Bacteriophage therapy. Antimicrobial Agents & Chemotherapy. 45(3):649-59, 2001. UI: 21091851. Summer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R. 2007. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts.  J. Mol. Biol. 373:1098-1112.

    Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma JJ, and Young Ry. 2004. Burkholderia cenocepacia Phage BcepMu and a Family of Mu-like Phages encoding potential pathogenesis factors.  J. Mol. Biol. 340: 49-65.


    Sun S, Kondabagil K, Gentz PM, Rossmann MG, Rao VB. 2007. The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids. Mol. Cell 25: 943-949. UTHSCSA Link

    Surtees JA, Funnell BE. 2001. The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J. Biol. Chem. 276 (15): 12385-12394. Svoboda, E. (2009)  The next phage. popsci.com.

    Sycheva LV Shneider MM Sykilinda NN Ivanova MA Miroshnikov KA Leiman PG.  2012.  Crystal structure and location of gp131 in the bacteriophage phiKZ virion.  Virology 434:257-264. PMID 21031178.

    Takeda S, Arisaka F, Ishii S, and Kyogoku Y. 1990. Structural studeis of the contractile tail sheath protein of bacteriophage T4. 1. Conformational change of the tail sheath upon contraction as probes by differential chemical modification. Bioch. 29: 5050-5056.

    Takeda S, Sasaki T, Ritani A, Howe MM, Arisaka F. 1998. Discovery of the tail tube gene of bacteriophage Mu and sequence analysis of the sheath and tube genes.  BBA 1399:88-92.

    Tang L, Gilcrease EB, Casjens SR, Johnson JE. 2006. Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 14:837-45.

    Tang J, Lander GC, Olia A, Li R, Casjens S, Prevelige P Jr, Cingolani G, Baker TS, Johnson JE.  2011.  Peering down the barrel of a bacteriphage portal: The genome packaging and release valve in P22.  Structure 19:496-502. PMID 21439834.

    Tétart, F., Desplats, C., Kutateladze, M., Monod, C., Ackermann, H.-W., Krisch, H. M. (2001). Phylogeny of the
         Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages. J. Bacteriol. 183: 358-366.

    Tetart F, Desplats C, Krisch HM
         Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: Recombination between conserved motifs
         swaps adhesin specificity
         J MOL BIOL 282 (3): 543-556 SEP 25 1998. Thoma C, Borst E, Messerle M, Rieqer M, Hwang JS, Bogner E. 2006. Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus. Biochem. 45:8855-8863.

    Thomassen E, Gielen G, Schutz M, Schoehn G, Abrahams, JP, Miller S, and van Raaij MJ.  2003.  The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold.  J. Mol. Biol. 331:361-373.


    Tremblay DM. Moineau S. Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus
    thermophilus.Virology. 255(1):63-76, 1999

    Trojet SN, Caumont-Sarcos A, Perrody E, Comeau AM, Krisch HM.  2011.  The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phages's host specificity.  Genome Biol. Evol 3:674-686.

    Traub, F., and Maeder, M., 1984. Formation of the prohead core of bacteriophage T4 in vivo.  J. Virol. 49:892.

    Truniger V, Lazaro JM, Esteban FJ, et al. 2002. A positively charged residue of phi 29 DNA polymerase, highly conserved in DNA polymerases from families A and B,  is involved in binding the incoming nucleotide. Nucl. Acids Res. 30 (7): 1483-1492.

    Trus, B. L., N. Q. Chen, W. W. Newcomb, F. L. Homa, J. C. Brown, and A. C. Steven. 2004. Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J. Virol. 78:12668–12671. UTHSCSA Link.

    Turnquist S, Simon M, Egelman E, Anderson D. 1992. Supercoiled DNA wraps around the bacteriophage phi 29 head-tail connector.  PNAS 89:10479-10483.


    Uchiyama J, Rashel M, Maeda Y, Takemura I, Suqihara S, Akechi K, Muraoka A, Wakiquchi H, Matsuzaki S. 2008. Isonation and characterization of a novel Enterococcus faecalis bacteriophage phiEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200-6. UTHSCSA Link.


    Valentine AM, Ishmael FT, Shier VK, Benkovic SJ. 2001. A zinc ribbon protein in DNA replication: Primer synthesis and macromolecular interactions by the bacteriophage T4 primase.  BIOCHEMISTRY  40 (50): 15074-15085.

    Van de Peer Y, and De Wachter R. 1997. TREECON for Windows: a software package for the construction and drawing of evolutionary trees. Comput. Appl. Biosci. 10: 569-570.


    van der Wilk F, Dullemans AM, Verbeek M, et al. 1999. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Vir. 262 (1): 104-113. *

    van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsetns EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, and Wichner (eds.) 2000. Virus Taxonomy; Seventh report of the international committee on taxonomy of viruses. Academic Press, New York. van Sinderen D. Karsens H. Kok J. Terpstra P. Ruiters MH. Venema G. Nauta A. 1996. Sequence analysis and
    molecular characterization of the temperate lactococcal bacteriophage r1t. Molecular Microbiology. 19(6):1343-55, 1996*

    Vander Byl C, Kropinski AM. 2000. Sequence of the genome of Salmonella bacteriophage P22. J. Bact. 182 (22): 6472-6481. UTHSCSA Link.

    Vanloock MS, Chen YJ, Yu X, Patel SS, Egelman EH.  2001. The primase active site is on the outside of the hexameric bacteriophage T7 gene 4 helicase-primase ring. J. Mol. Biol 311 (5): 951-956.


    Valpuesta, J.M., and Carrascosa, J.L. (1994) Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q Rev Biophys 27: 107–155.

    Van den Bossche A, Ceyssens PJ, De Smet J, Hendrix H, Belfon H, Leimer N, Wagemans J, Delattre AS, Cenes W, Aertsen A, Laduyt B, Minakhin L, Severinov K, Noben JP, Lavigne R.  2014. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa.    J. Proteome Res. 13:4446-4456. PMID 25185497.

    Villarreal LP, DeFilippis VR. (2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J. Vir.  74 (15): 7079-7084.

    Villegas A, She Y-M, Kropinski AM Lingohr E Mazzocco A,Ojha S, Waddell TE, Ackermann W, Moyles DM, Ahmed R, and Johnson RP.  The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1.  Virol J. (2009) 6:41.

    Voelker LL. Dybvig K. Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome
    identifies the putative virulence factor. Gene. 233(1-2):101-7, 1999

    Vybiral D Takac M Loessner M Witte A von Ahsen U and Blaesi U. Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol. Lett. 219 (2), 275-283 (2003).

    Wagemans J, Blasdel BG, Van den Bossche A, Uytterhoeven B, De Smet J, Paeshuvse J, Cenens W, Aertsen A, Uetz P, Delattre AS, Ceyssens PJ, Lavigne R. 2014.  Functional elucidation of antibacterial pahge ORFans targeting Pseudomonas aeruginosa.  Cell Microbiol, in press.  PMID 25059764.
    Waldor, M.K., and Mekalanos, J.J. (1996) Lysogenic conversion by a filamentous phage  encoding cholera toxin. Science 272, 1910-1914. Waldor MK, Rubin EJ, Pearson GDN, Kimsey H, Mekalanos JJ.  1997.  Regulation, replication, and integration functions of the Vibrio cholerae CTX phi are encoded by region RS2. Mol. Microbiol. 24(5): 917-926. Wang IN, Smith DL, Young R. (2000). Holins: The protein clocks of bacteriophage infections. Ann Rev Microbiol.  54: 799-825. Wang J Sattar KMA Wang CC Karam JD Konigsberg WH Steitz TA. 1997. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69.  Cell 89:1087-1099.  PMID 113889835

    Weisberg RA. Gottesmann ME. Hendrix RW. Little JW. Family values in the age of genomics: comparative analyses of
    temperate bacteriophage HK022.  Annual Review of Genetics. 33:565-602, 1999 UI: 20155008 Westblade LF, Minakhin L, Kuznedelov K, Tackett AJ, Chang, EJ, Mooney RA, Vvedenskaya I, Wang, QJ, Fenyo D, Rout MP, Landick R, Chait BT, Severinov K, and Darst SA. 2008. Rapid isolation and identification of badteriophage T4-encoded modifications of Escherichia coli RNA polymerase: A generic method to study bacteriophage/host interactions.  J. Proteome Res. 7, 1244-1250. UTHSCSA Link.

    Whichard JM. (2000) Bacteriophage felix O1: Genetic characterization and Bioremedial application.  Ph.D. Dissertation

    Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860-864.


    Wikoff WR, Conway JF, Tang J, Lee KK, Gan L, Chen N, Duda RL, Hendrix RW, Steven AC, Jonhsn JE. 2006. Time-resolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography.  J. Str. Biol. 153: 300-306.

    Wilhelm SW and Suttle CA. 1999. Viruses and nutrient cycles in the sea. Biosience 49: 781-788.

    Willis,S.H., Kazmierczak,K.M., Carter,R.H. and Rothman-Denes,L.B. 2002.  N4 RNA Polymerase II, a Heterodimeric RNA Polymerase with Homology to the Single-Subunit Family of RNA Polymerases J. Bacteriol. 184 (18), 4952-4961.
  • Two genes in coliphage N4 (p7, p4) correspond to the N and C terminal parts of T7 RNA polymerase.  2ndary struture and motif alignments are given in the paper.
  • A fusion protein of the two works.
  • N4 is not completely sequenced, so its overall relation to T7 is difficult to ascertain.
  • Suggests that single chain T7 RNA polymerase may have been created by a fusion, or vice versa.
  • N4 gp17 is a ssDNA binding protein required for the RNA polymerase to function.
  • In earlier papers by this group: N4 is 72,000 bp linear, with terminal repeats and variable sticky ends.
  • An early paper about N4 is Schito GC. The genetics and physiology of coliphage N4. Virology. 55(1):254-65, 1973.

  • Wills E, Scholtes L, Baines JD. 2006. The Herpes Simplex Virus 1 DNA packaging proteins encoded by UL6, UL15, UL17, UL28, and UL33 are located on the external surface of the viral capsid. J. Vir. Aug 18 Epub ahead of print..

    Wojciak JM. Sarkar D. Landy A. Clubb RT. Arm-site binding by lambda -integrase: solution structure
    and functional characterization of its amino-terminal domain. Proceedings of the National Academy of
    Sciences of the United States of America. 99(6):3434-9, 2002.

    Wommack KE, and Colwell, RR. 2000. Virioplankton: Viruses in Aquatic Ecosystems.  Microbiol. and Mol. Biol. Rev. 64: 69-114.

    Woods DE, Jeddeloh JA, Fritz DL, and DeShazer D. 2002. Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J. Bacteriol. 184 (14), 4003-4017


    Woods L, Catalano CE.
    Kinetic characterization of the GTPase activity of phage lambda terminase: Evidence for communication between the two "NTPase" catalytic sites of the enzyme.
    BIOCHEMISTRY  38 (44): 14624-14630 NOV 2 1999.

    Wright A, Hawkins CH, Anggard EE, & Harper DR.  (2009)  A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminar report of efficacy.  Clinical Otolaryngology 34: 349-357.

    Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG.  2009. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike.  Mol. Cell 34:375-386.  PMID  19450535.

    Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG: 2006. Structural changes of bacteriophage phi29 upon DNA packaging and release. EMBO J 25:5229-5239.  PMID 17053784.

    Xiang Y, Rossmann MG.  2011.  Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif..  PNAS 108:4806-4810.  PMID 21383126.

    Xiao, F., Moll, D., Guo, S. & Guo, P. (2005). Binding of pRNA to the N-terminal amino acids of connector protein of bacterial phage phi29. Nucl. Acids Res. 33: 2640–2649.

    Xu J, Hendrix RW, Duda RL. 2004. Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell. 16:11-21.

    Yang K, Baines JD. 2006. The putative terminase subunit of herpes simplex virus 1 encoded by UL28 is necessary and sufficient to mediate interaction between pUL15 and pUL33. J. Vir. 80: 5733-5739.

    Yang Q, Berton N, Manning MC, Catalano CE.
    Domain structure of gpNu1, a phage lambda DNA packaging protein.
    BIOCHEMISTRY  38 (43): 14238-14247 OCT 26 1999.

    Yakunina M Artamonova T Borukhov S Makarova KS Severinov K Minakhin L.  2015.  A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage.  Nucl. Acids Res. 43:10411-10420.  PMID 26490960.

    Yang F, Forrer P, Dauter Z, Conway JF, Cheng N, Cerritelli ME, Steven AC, Pluckthun A, Wlodawer A.  2000. Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD.  Nat. Str. Biol.7:230-237. PMID 10700283.

    Yoshikawa H, Garvey KJ, Ito J. 1985. Nucleotide sequence analysis of DNA replication origins of the small Bacillus bacteriophages: evolutionary  relationships.  Gene. 37:125-30.  PMID: 3932129

    Young R, Wang I-N, and Roof WD. 2000. Phages will out; strategies of host cell lysis. Trends Microbiol. 8: 120-128.

    Young R. Bacteriophage holins: deadly diversity. Journal of Molecular Microbiology
    & Biotechnology. 4(1):21-36, 2002.

    Zafar, N., R. Mazumder and D. Seto (2002). "CoreGenes: A computational tool for identifying and cataloging "core" genes in a set of small genomes." BMC Bioinformatics 3(1): 12.  PMID 11972896

    Zajanckauskaite A, Malys N, Nivinskas R. 1997. A rare type of overlapping genes in bacteriophage T4: gene 30.3' is completely embedded within

    Zhang Z, Greene B, Thuman-Commike PA, Jakana J, Prevelige PE Jr, King J, Chiu W. (2000) Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. J Mol Biol 297:615–626. PMID 10731426.

    gene 30.3 by one position downstream.  Gene 194: 157-162.


    Zhang, F., Lemieux, S., Wu, X., St.-Arnaud, S., McMurray, C. T., Major, F. & Anderson, D. (1998). Function of hexameric RNA in packaging of bacteriophage phi29 DNA in vitro. Mol. Cell, 2, 141–147. UTHSCSA Link.

    Zhang X, and Studier FW. 2004. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.  J. Mol. Biol. 340: 707-730. UTHSCSA Link. Zheng H, Olia AS, Gonen M, Andrews S, Cingolani G, and Gonen T. 2007.  A conformational switch in bacteriophage P22 portal protein primes genome injection.  Mol. Cell. 29:376-383. UTHSCSA Link.

    Zhou ZH, Hiu WH, Shah S, Hih J, O'Connor CM, Sherman MB, Kedes DH, Schein S.  2014.  Four levels of heirarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization.  Structure 22: 1385-1398.  PMID 25220471.

    Now setting links as http://ncbi.nlm.nih.gov/pubmed/[pubmed id]
    Last update 12/10/2014 - Stephen C. Hardies

    Stephen C. Hardies Home Page.